Skip to main content
Log in

Modeling of the continuous casting of steel—past, present, and future

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This lecture honoring Keith Brimacombe looks over the history, current abilities, and future potential of mathematical models to improve understanding and to help solve practical problems in the continuous casting of steel. Early finite-difference models of solidification, which were pioneered by Keith Brimacombe and his students, form the basis for the online dynamic models used to control spray water flow in a modern slab caster. Computational thermal-stress models, also pioneered by Brimacombe, have led to improved understanding of mold distortion, crack formation, and other phenomena. This has enabled process improvements, such as optimized mold geometry and spray-cooling design. Today, sophisticated models such as transient and multiphase fluid-flow simulations rival water modeling in providing insights into flow-related defects. Heat-flow and stress models have also advanced to yield new insights. As computer power increases and improvements via empirical plant trials become more costly, models will likely play an increasing role in future developments of complex mature processes, such as continuous casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I.V. Samarasekera: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 5–29.

    CAS  Google Scholar 

  2. A.W.D. Hills: J. Iron Steel Inst., 1965, vol. 203, p. 18.

    Google Scholar 

  3. N. Chvorinov: Giesserei, 1940, vol. 27, pp. 201–08.

    Google Scholar 

  4. J. Savage and W.H. Pritchard: Iron Steel Inst., 1954, vol. 178, pp. 269–77.

    Google Scholar 

  5. I.V. Samarasekera and J.K. Brimacombe: in Mold QIIeration for Quality and Productivity, A.W. Cramb and E.S. Szekeres, eds., ISS, Warrendale, PA, 1991, pp. 55–67.

    Google Scholar 

  6. E.A. Mizikar: Trans. TMS-AIME, 1967, vol. 239, pp. 1747–53.

    CAS  Google Scholar 

  7. J. Lait, J.K. Brimacombe, and F. Weinberg: Steelmaking, 1974, vol. 2, pp. 90–98.

    Google Scholar 

  8. J.E. Lait, J.K. Brimacombe, F. Weinberg, and F.C. Muttitt: Open Hearth Conf. Proc., ISS, Warrendale, PA, 1973, vol. 56, pp. 269–302.

    Google Scholar 

  9. J. Szekely and R.T. Yadoya: Metall. Mater. Trans., 1973, vol. 4, pp. 1379–88.

    Google Scholar 

  10. J. Szekely and V. Stanek: Metall. Trans., 1970, vol. 1, pp. 119–26.

    CAS  Google Scholar 

  11. J. Szekely and S.T. DiNovo: Metall. Trans. A, 1974, vol. 5, pp. 747–54.

    Google Scholar 

  12. J.K. Brimacombe: Can. Metall. Q., 1976, vol. 15 (2), pp. 163–75.

    Google Scholar 

  13. R.B. Mahapatra, J.K. Brimacombe, and I.V. Samarasekera: Metall. Trans. B, 1991, vol. 22B, pp. 875–88.

    CAS  Google Scholar 

  14. S. Kumar, J.A. Meech, I.V. Samarasekera, and J.K. Brimacombe: Iron Steelmaker, 1993, vol. 20 (9), pp. 29–36.

    CAS  Google Scholar 

  15. B.G. Thomas and B. Ho: J. Eng. Industry, 1996, vol. 118 (1), pp. 37–44.

    Google Scholar 

  16. I.V. Samarasekera and J.K. Brimacombe: Ironmaking and Steelmaking, 1982, vol. 9 (1), pp. 1–15.

    Google Scholar 

  17. R. Dippenaar, I.V. Samarasekera, and J.K. Brimacombe: Ironmaker Steelmaker (ISS Trans.), 1986, vol. 7, pp. 331–43.

    Google Scholar 

  18. A. Grill, J.K. Brimacombe, and F. Weinberg: Ironmaking and Steelmaking, 1976, vol. 3 (1), pp. 38–47.

    Google Scholar 

  19. K. Sorimachi and J.K. Brimacombe: Ironmaking and Steelmaking, 1977, vol. 4, pp. 240–45.

    Google Scholar 

  20. K. Kinoshita, T. Emi, and M. Kasai: Tetsu-to-Hagané, 1979, vol. 65 (14), pp. 2022–31.

    CAS  Google Scholar 

  21. J.O. Kristiansson: J. Thermal Stresses, 1982, vol. 5, pp. 315–30.

    Google Scholar 

  22. J.E. Kelly, K.P. Michalek, T.G. O’Connor, B.G. Thomas, and J.A. Dantzig: Metall. Trans. A, 1988, vol. 19A, pp. 2589–2602.

    CAS  Google Scholar 

  23. V.R. Voller and F. Porte-Agel: J. Computational Phys., 2002, vol. 179, pp. 1–6.

    Article  Google Scholar 

  24. B.G. Thomas and L. Zhang: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1185–97.

    Google Scholar 

  25. S. Sivaramakrishnan, H. Bai, B.G. Thomas, P. Vanka, P. Dauby, and M. Assar: Ironmaking Conf. Proc., Pittsburgh, PA, ISS, Warrendale, PA, (Pittsburgh, PA, March 26–29, 2000), 2000, vol. 59, pp. 541–57.

    Google Scholar 

  26. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: Iron Steel Inst. Jpn. Int., 2001, vol. 41 (10), pp. 1266–76.

    Google Scholar 

  27. Q. Yuan, S.P. Vanka, and B.G. Thomas: 2nd Int. Symp. on Turbulent and Shear Flow Phenomena, (Stockholm, Sweden, June 27–29, 2001), Royal Institute of Technology (KTH), Stockholm, 2001, vol. 2, pp. 519–24.

    Google Scholar 

  28. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, and S.P. Vanka: J. Met.: JOM-e, http://www.tms.org/pubs/journals/JOM/0201/Thomas/Thomas0201.html, 2002.

  29. R.C. Sussman, M. Burns, X. Huang, and B.G. Thomas: 10th Process Technology Conf. Proc., Toronto, Canada, Apr. 5–8, 1992, ISS, Warrendale, PA, 1992 vol. 10, pp. 291–304.

    Google Scholar 

  30. B.G. Thomas, R. O’Malley, T. Shi, Y. Meng, D. Creech, D. Stone: Modeling of Casting, Welding, and Advanced Solidification Processes, Aachen, Germany, Aug. 20–25 2000, Shaker Verlag GmbH, Aachen, Germany, 2000, pp. 769–76.

    Google Scholar 

  31. B.G. Thomas, R.J. O’Malley, and D.T. Stone: Modeling of Casting, Welding, and Advanced Solidification Processes, San Diego, CA, TMS, Warrendale, PA, 1998, vol. VIII, pp. 1185–99.

    Google Scholar 

  32. Report CFX 4.2, AEA Technology, Pittsburgh, PA, 1998.

  33. D. Creech: Masters Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1998.

    Google Scholar 

  34. B.G. Thomas, B. Ho, and G. Li: in Alex McLean Symp. Proc., Toronto, (Toronto, Canada, July 12–14, 1998), ISS, Warrendale, PA, 1998, pp. 177–93.

    Google Scholar 

  35. G.D. Lawson, S.C. Sander, W.H. Emling, A. Moitra, and B.G. Thomas: in Steelmaking Conf. Proc., ISS, Warrendale, PA, Chicago, IL, 1994, vol. 77, pp. 329–36.

    Google Scholar 

  36. C. Li and B.G. Thomas: Brimacombe Memorial Symp., Vancouver, Canada, Canadian Institute of Mining and Metallurgy, Montreal, 2000, pp. 595–611.

    Google Scholar 

  37. J.-K. Park, B.G. Thomas, Y. Meng, and I.V. Samarasekera: “Analysis of Thermo-Mechanical Behavior in Billet Casting,” Report, University of British Columbia, Vancouver, 2001.

    Google Scholar 

  38. I.V. Samarasekera, D.L. Anderson, and J.K. Brimacombe: Metall. Trans. B, 1982, vol. 13B, pp. 91–104.

    CAS  Google Scholar 

  39. T. O’Conner and J. Dantzig: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 443–57.

    Google Scholar 

  40. G. Li, B.G. Thomas, and J. Stubbins: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2491–2502.

    Article  CAS  Google Scholar 

  41. J.-K. Park, B.G. Thomas, I.V. Samarasekera, and U.-S. Yoon: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 437–49.

    CAS  Google Scholar 

  42. J.-K. Park, I.V. Samarasekera, B.G. Thomas, and U.-S. Yoon: 83rd Steelmaking Conf. Proc., Pittsburgh, PA, March 2–29, 2000, ISS, Warrendale, PA, 2000, vol. 83, pp. 9–21.

    Google Scholar 

  43. O.M. Puhringer: Stahl Eisen, 1976, vol. 96 (6), pp. 279–84.

    Google Scholar 

  44. K. Miyazawa and K. Schwerdtfeger: Ironmaking and Steelmaking, 1979, vol. 6 (2), pp. 68–74.

    Google Scholar 

  45. A. Palmaers, A. Etienne, and J. Mignon: Stahl Eisen, 1979, vol. 99 (19), pp. 1039–50.

    Google Scholar 

  46. S.S. Daniel: Ironmaking and Steelmaking, 1982, No. 1, 16–24.

  47. A. Grill and K. Schwerdtfeger: Ironmaking and Steelmaking, 1979, vol. 6 (3), pp. 131–35.

    Google Scholar 

  48. K. Miyazawa and K. Schwerdtfeger: Arch. Eisenhuttenwes., 1981, vol. 52 (11), pp. 415–22.

    CAS  Google Scholar 

  49. F.G. Rammerstorfer, C. Jaquemar, D.F. Fisher, and H. Wiesinger: Num. Methods in Thermal Problems, Pineridge Press Limited, Swansea, United Kingdom, 1979, pp. 712–22.

    Google Scholar 

  50. T. Matsumiya and Y. Nakamura: “Mathematical Analysis of Continuously Cast Slab Bulging,” Report No. 21, Nippon Steel, Chiba, Japan, 1983, pp. 347–54.

    Google Scholar 

  51. B. Barber, B.A. Lewis, and B.M. Leckenby: Ironmaking and Steelmaking, 1985, vol. 12 (4), pp. 171–75.

    Google Scholar 

  52. J.B. Dalin and J.L. Chenot: Int. J. Num. Methods Eng., 1988, vol. 25 (1), pp. 147–63.

    Article  Google Scholar 

  53. J. Gancarz, J.Y. Lamant, M. Larrecq, and P. Rahier: 74th Steelmaking Conf. Proc., ISS, Warrendale, PA, Washington, DC, 1991, vol. 74.

    Google Scholar 

  54. K. Okamura and H. Kawashima: Proc. Int. Conf. Comp. Ass. Mater. Design Proc. Simul., ISIJ, Tokyo, 1993, pp. 129–34.

    Google Scholar 

  55. R. Mostert, R. Haardt, and K.-H. Tacke: Steelmaking Conf. Proc., Baltimore, MD, ISS, Warrendale, PA, 2001, vol. 84, pp. 177–89.

    Google Scholar 

  56. L. Yu: Master’s Thesis, University of Illinois, Urbana, IL, 2000.

    Google Scholar 

  57. K.-J. Lin: “Effect of Misalignment and Secondary Cooling on Bulging Strain in Continuous Cast Slabs,” Report, Continuous Casting Consortium, University of Illinois, Urbana, IL, 2001.

    Google Scholar 

  58. Y. Sugitani, M. Nakamura, T. Kanazawa, and J.Y. Lamant: Trans. Iron Steel Inst. Jpn., 1985, vol. 25, p. B9.

  59. P.A. Woodberry, S.R. Story, R.B. Mahapatra, R.H. Davies, L. Moore, and R. Serje: Steelmaking Conf. Proc., (Dallas, TX, March 28–31, 1993), ISS, Warrendale, PA, 1993, vol. 76, pp. 355–65.

    Google Scholar 

  60. K. Wunnenberg and D. Huchingen: Stahl Eisen. 1978, vol. 98 (6), pp. 254–59.

    Google Scholar 

  61. J.Y. Lamant, M. Larrecq, J.P. Birat, J.L. Hensgen, J.D. Weber, and J.C. Dhuyvetter: Continuous Casting 85 Proc., Institute of Metals, London, 1985, pp. 37.1–37.8.

    Google Scholar 

  62. T. Matsumiya, M. Ito, H. Kajioka, S. Yamaguchi, and Y. Nakamura: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 540–46.

    Google Scholar 

  63. A. Yamanaka, K. Nakajima, and K. Okamura: Ironmaking and Steelmaking, 1995, vol. 22 (6), pp. 508–12.

    CAS  Google Scholar 

  64. Y.-M. Won, T.J. Yeo, D.J. Seol, and K.H. Oh: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 779–94.

    Article  CAS  Google Scholar 

  65. J.K. Brimacombe: Metall. Trans. B, 1993, vol. 24B, pp. 917–35.

    CAS  Google Scholar 

  66. R.A. Hardin, K. Liu, and C. Beckermann: in Materials Processing in the Computer Age, TMS, Warrendale, PA, 2000, vol. 3, pp. 61–74.

    Google Scholar 

  67. K. Dittenberger, K. Morwald, G. Hohenbichler, and U. Feischl: VAI 7th Int. Continuous Casting Conf., Voest-Alpine Ind., Linz, Austria, 1996, pp. 44.1–44.6.

    Google Scholar 

  68. W.H. Emling and S. Dawson: Steelmaking Conf. Proc., Washington, DC, ISS, Warrendale, PA, 1991, vol. 74, pp. 197–217.

    Google Scholar 

  69. O. Lang, C. Federspiel, M. Thalhammer, and J. Watzinger: VAI 8th Continuous Casting Conf., (Linz, Austria, June 5–7, 2000), Voest-Alpine Ind., Linz, Austria, 2000, pp. 16.1–16.7.

    Google Scholar 

Download references

Authors

Additional information

The Brimacombe Memorial Lectureship was established in 1999 by the Process Technology Division of the Iron & Steel Society to honor Dr. J. Keith Brimacombe’s outstanding accomplishments in the area of process metallurgy, his dedication to the steel industry, and his profound effect on people in the industry; and also to acquaint members, students, and engineers with the many exciting opportunities that exist in the area of process metallurgy and to inspire them to pursue careers in this field.

Brian G. Thomas is a professor of mechanical engineering at the University of Illinois and director of the Continuous Casting Consortium. He received his Bachelors of metallurgical engineering from McGill University in 1979 and Ph.D. in metallurgical engineering in 1985 from the University of British Columbia. In between, he worked in the Materials Research Department of Algoma Steel (Sault Ste. Marie, ON). His recent research efforts focus on the development and application of mathematical models of all aspects of the continuous casting of steel and related processes. Dr. Thomas has authored with co-workers over 150 technical publications on his research, which has been recognized with a Presidential Young Investigator Award from NSF, Outstanding Young Manufacturing Engineer Award from SME, Xerox Award for UIUC Faculty research, and more than ten best paper awards from AFS, AIME, ISS, TMS, CIM, and ASM International. He has participated in several short courses to transfer technology to industry, including the annual Brimacombe Continuous Casting Course.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, B.G. Modeling of the continuous casting of steel—past, present, and future. Metall Mater Trans B 33, 795–812 (2002). https://doi.org/10.1007/s11663-002-0063-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-002-0063-9

Navigation