Skip to main content

Advertisement

Log in

Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Critical assessment of the existing models for the desorption rate of hydrogen trapped in steel indicated that the desorption rate can be described by the kinetic formula dX/dt=A(1-X) exp (-E d /RT). Good fit of the formula has been found to the hydrogen released during thermal-desorption spectrometry (TDS) analysis from the coherent and incoherent TiC particles in 0.05C-0.22Ti-2.0Ni and 0.42C-0.30Ti steels. The activation energy (E d ) and the constant parameter A can be determined uniquely with high accuracy by a single spectrum simulation. The activation energy for hydrogen desorption from the incoherent TiC particle in the well-tempered 0.05C-0.22Ti-2.0Ni steel is 85.7 kJ/mol. In the 0.42C-0.30Ti steel, a higher activation energy of 116 kJ/mol was obtained for the coarse incoherent TiC when tempered at 650 °C and 700 °C. The activation energy decreased from 116 kJ/mol at 650 °C to 68 kJ/mol at 500 °C. The nanosized TiC coherent precipitates in the 0.42C-0.30Ti steel were found to have an activation energy ranging from 46 to 59 kJ/mol, depending on the tempering temperature. A low value of much less than 104 s−1 was obtained for the constant parameter A for most cases, which suggested that the retrapping of the released hydrogen is not important in the thermal-desorption analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  2. G.M. Pressouyre and I.M. Bernstein: Acta Metall., 1979, vol. 27, pp. 89–100.

    Article  CAS  Google Scholar 

  3. S. Yamasaki and T. Takahashi: Tetsu-to-Hagané, 1997, vol. 83, pp. 454–59.

    CAS  Google Scholar 

  4. W. Beck, J.O’M. Bockris, J. McBreen, and L. Naris: Proc. R. Soc. Ser. A, 1966, vol. 290, pp. 220–35.

    ADS  CAS  Google Scholar 

  5. A.J. Kumnick and H.H. Johnson: Metall. Trans., 1974, vol. 5, pp. 1199–1206.

    CAS  Google Scholar 

  6. H. Hagi, Y. Hayashi, and N. Ohtani: Trans. Jpn. Inst. Met., 1979, vol. 20, pp. 349–57.

    CAS  Google Scholar 

  7. R. Valentini, A. Solina, S. Matera, and P. De Gregorio: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3773–80.

    Article  CAS  Google Scholar 

  8. K. Yang, M.Z. Cao, X.J. Wan, and C.X. Shi: Scripta Metall., 1988, vol. 22, pp. 1373–78.

    Article  CAS  Google Scholar 

  9. N.R. Quick and H.H. Johnson: Acta Metall., 1978, vol. 26, pp. 903–07.

    Article  CAS  Google Scholar 

  10. R.F. Miller, J.B. Hudson, and G.S. Ansell: Metall. Trans. A, 1975, vol. 6A, pp. 117–21.

    Google Scholar 

  11. A.J. Kumnick and H.H. Johnson: Acta Metall., 1980, vol. 28, pp. 33–39.

    Article  CAS  Google Scholar 

  12. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1983, vol. 14A, pp. 1299–305.

    CAS  Google Scholar 

  13. D.C. Carmichael, J.R. Hornaday, A.E. Morris, and N.A. Parlee: Trans. TMS-AIME, 1960, vol. 218, pp. 826–32.

    CAS  Google Scholar 

  14. E.W. Johnson and M.L. Hill: Trans. TMS-AIME, 1960, vol. 28, pp. 1104–12.

    Google Scholar 

  15. J.Y. Choi: Metall. Trans., 1970, vol. 1, pp. 911–19.

    CAS  Google Scholar 

  16. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1978, vol. 9A, pp. 1571–80.

    CAS  Google Scholar 

  17. H. Hagi, Y. Hayashi, and N. Ohtani: J. Jpn. Inst. Met., 1981, vol. 45, pp. 276–82.

    CAS  Google Scholar 

  18. H. Hagi and Y. Hayashi: J. Jpn. Inst. Met., 1985, vol. 49, pp. 327–31.

    CAS  Google Scholar 

  19. H. Hagi and Y. Hayashi: J. Jpn. Inst. Met., 1993, vol. 57, pp. 864–69.

    CAS  Google Scholar 

  20. G.W. Hong and J.Y. Lee: J. Mater. Sci., 1983, vol. 18, pp. 271–77.

    Article  CAS  Google Scholar 

  21. W.M. Robertson and A.W. Thompson: Metall. Trans. A, 1980, vol. 11A, pp. 553–57.

    CAS  Google Scholar 

  22. K. Kiuchi and R.B. McLellan: Acta Metall., 1983, vol. 31, pp. 961–84.

    Article  CAS  Google Scholar 

  23. A. McNabb and P.K. Foster: Trans. TMS-AIME, 1963, vol. 227, pp. 618–27.

    CAS  Google Scholar 

  24. R.A. Oriani: Acta Metall., 1970, vol. 18, pp. 147–57.

    Article  CAS  Google Scholar 

  25. G.M. Pressouyre and I.M. Bernstein: Corr. Sci., 1978, vol. 18, pp. 819–33.

    Article  CAS  Google Scholar 

  26. H.E. Kissinger: Analyt. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  27. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  28. H.G. Lee and J.Y. Lee: Acta Metall., 1984, vol. 32, pp. 131–36.

    Article  CAS  Google Scholar 

  29. T. Tsuchida, T. Hara, and K. Tsuzaki: Tetsu-to-Hagané, 2002, vol. 88, pp. 771–78.

    CAS  Google Scholar 

  30. K. Takai and R. Watanuki: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 520–26.

    CAS  Google Scholar 

  31. K. Takai, Y. Chiba, K. Noguchi, and A. Nozue: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2659–65.

    Article  CAS  Google Scholar 

  32. D.G. Enos and J.R. Scully: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1151–66.

    Article  CAS  Google Scholar 

  33. T. Kushida, H. Matsumoto, N. Kuratomi, T. Tsumura, F. Nakasato, and T. Kudo: Tetsu-to-Hagané, 1996, vol. 82, pp. 297–302.

    CAS  Google Scholar 

  34. J.L. Lee and J.Y. Lee: Met. Sci., 1983, vol. 17, pp. 426–32.

    Article  CAS  Google Scholar 

  35. K.L. Wilson and M.I. Baskes: J. Nucl. Mater., 1978, vols. 76–77, pp. 291–97.

    Article  Google Scholar 

  36. A. Turnbull, R.B. Hutchings, and D.H. Ferriss: Mater. Sci. Eng. A, 1997, vol. A238, pp. 317–28.

    CAS  Google Scholar 

  37. K. Ono and M. Meshii: Acta Metall., 1992, vol. 40, pp. 1357–64.

    Article  CAS  Google Scholar 

  38. T. Yamaguchi and M. Nagumo: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 514–19.

    CAS  Google Scholar 

  39. F.G. Wei, T. Hara, T. Tsuchida, and K. Tsuzaki: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 539–47.

    CAS  Google Scholar 

  40. R.G. Baker and J. Nutting: ISI Special Report vol. 64: Precipitation Processes in Steels, Iron and Steel Institute, London, 1959, pp. 1–22.

    Google Scholar 

  41. A.H.M. Krom and A. Bakker: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1475–82.

    Article  CAS  Google Scholar 

  42. J.Y. Lee and S.M. Lee: Surf. Coating Technol., 1986, vol. 28, pp. 301–14.

    Article  CAS  Google Scholar 

  43. T. Asaoka, G. Lapasset, M. Aucouturier, and P. Lacombe: Corrosion, 1978, vol. 34, pp. 39–47.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, F.G., Hara, T. & Tsuzaki, K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum. Metall Mater Trans B 35, 587–597 (2004). https://doi.org/10.1007/s11663-004-0057-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-004-0057-x

Keywords

Navigation