Skip to main content
Log in

Mathematical simulation of fluid dynamics during steel draining operations from a ladle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fluid flow dynamics during ladle drainage operations of steel under isothermal and nonisothermal conditions has been studied using the turbulence shear stress transport k-ε model (SST k-ω) and the multiphase volume of fluid (VOF) model. At high bath levels, the angular velocity of the melt, close to the ladle nozzle, is small rotating anticlockwise and intense vertical-recirculating flows are developed in most of the liquid volume due to descending steel streams along the ladle vertical wall. These streams ascend further downstream driven by buoyancy forces. At low bath levels, the melt, which is close to the nozzle, rotates clockwise with higher velocities whose magnitudes are higher for shorter ladle standstill times. These velocities are responsible for the formation and development of a vortex on the bath free surface, which entrains slag into the nozzle by shear-stress mechanisms at the metal-slag interface. The critical bath level or bath height for this phenomenon is 0.35 m (in this particular ladle design) for a ladle standstill time of 15 minutes and decreases with longer ladle standstill times. At these steps, the vertical-recirculating flows are substituted by complex horizontal-rotating flows in most of the liquid volume. Under isothermal conditions, the critical bath level for vortex formation on the melt free surface is 0.20 m, which agrees very well with that determined with a 1/3 scale water model of 0.073 m. It is concluded that buoyancy forces, originated by thermal gradients, as the ladle cools, are responsible for increasing the critical bath level for vortex formation. Understanding vortex mechanisms will be useful to design simple and efficient devices to break down the vortex flow during steel draining even at very low metal residues in the ladle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sucker, J. Reinecke, and H. Hage-Jewainski: Stahl Eisen., 1985, vol. 105, pp. 765–69.

    CAS  Google Scholar 

  2. K. Haindle: Proc. Int. Assoc. for Hydraulic Research, NRC, Ottawa, Ontano, Canada, 1959, pp. 1–17.

    Google Scholar 

  3. S.C. Koria and U. Kanth: Steel Res., 1994, vol. 5, pp. 1–8.

    Google Scholar 

  4. G. Hasall, D.P. Jackman, and R.J. Hawkins: Ironmaking and Steelmaking, 1991, vol. 18, pp. 359–69.

    Google Scholar 

  5. H. Porto Pimenta, G.A. Valadares, and G.C. Beligoni: 11th Steelmaking Seminar Proc., Argentinean Institute of Iron and Steel, San Nicolas, Argentina, 1887, pp. 199–210.

    Google Scholar 

  6. R. Sankanarayan and R.I.L. Guthrie: Ironmaking and Steelmaking, 2002, vol. 29, pp. 147–53.

    Article  CAS  Google Scholar 

  7. R. Sankanarayan and R.I.L. Guthrie: Proc. Int. Symp. on “Developments in Ladle Steelmaking and Continuous Casting,” CIM-TMS, Montreal, Quebec, Canada, 1990, pp. 66–87.

    Google Scholar 

  8. R. Sankanarayan and R.I.L. Guthrie: ISS Steelmaking Conf., 1992, vol. 75, pp. 655–64.

    Google Scholar 

  9. P. Hammerschmidt, K.A. Tacke, H. Popper, L. Weber, and K. Schwerdtfeger: Ironmaking and Steelmaking, 1984, vol. 11, pp. 332–39.

    Google Scholar 

  10. R. Steffen: Proc. Int. Conf. On Secondary Metallurgy, RWH, Munich, Germany, 1987, pp. 547–52.

    Google Scholar 

  11. P. Andrzejewski, A. Diener, and W. Pluschkell: Steel Res., 1987, vol. 58, pp. 547–52.

    CAS  Google Scholar 

  12. P.R. Austin, J.M. Camplin, J. Herbertson, and I.J. Taggart: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 196–202.

    Google Scholar 

  13. C.E. Grip, H.O. Lampinen, M. Lundqvist, and S. Videhault: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. S211–14.

    Google Scholar 

  14. C.E. Grip, L. Jonsson, and P. Jonsson: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 1081–90.

    CAS  Google Scholar 

  15. C.E. Grip. L. Jonsson, P. Jonsson, and K.O. Jonsson: Iron Steel Inst. Jpn. Int., 1999, vol. 39, pp. 715–21.

    CAS  Google Scholar 

  16. S. Ganguly and S. Chakraborty: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp. 537–46.

    CAS  Google Scholar 

  17. Y. Pan and B. Bjorkman: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 53–62.

    CAS  Google Scholar 

  18. Y. Pan and B. Bjorkman: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 614–23.

    CAS  Google Scholar 

  19. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–14.

    Article  Google Scholar 

  20. J. Szekely: Fluid Flow Phenomena in Metals Processing, Academic Press, New York, NY, 1979, pp. 64–174.

    Google Scholar 

  21. D.C. Wilcox: Turbulence Modelling for CFD, 2nd ed., La Cañada Industries, La Cañada, CA, USA, 2002, pp. 123–25.

    Google Scholar 

  22. G. Solorio-Diaz, R.D. Morales, J. Palafox-Ramos, L Garcia-Demedices, and J. Palafox-Ramos: Iron Steel Inst. Jpn. Int., 2004, vol. 44, pp. 1024–32.

    CAS  Google Scholar 

  23. F. Menter: AIAA J., 1994, vol. 32, pp. 1598–1605.

    Article  Google Scholar 

  24. J.H. Ferziger and M. Peric: Computational Methods for Fluid Dynamics, Springer, London, 2002, pp. 381–96.

    Google Scholar 

  25. J.U. Brackbill, D.D. Kothe, and C. Zemach: J. Comp. Phys., 1992, vol. 100, pp. 335–54.

    Article  CAS  Google Scholar 

  26. B.E. Launder, G.J. Reece, and W. Rodi: J. Fluid Mech., 1975, vol. 68, Part 3, pp. 537–66.

    Article  Google Scholar 

  27. S.B. Pope: Turbulent Flows, Cambridge University Press, London, 2000, pp. 387–462.

    Google Scholar 

  28. Thermophysical Properties of Molten Iron Alloys, Iron and Steel Institute of Japan, 1982, Tokyo.

  29. J. Szekely: Rate Phenomena in Process Metallurgy, John Wiley & Sons, New York, NY, 1972, pp. 329–35.

    Google Scholar 

  30. J.D. Anderson: Computational Fluid Dynamics, McGraw-Hill Inc., New York, NY, 1995, pp. 37–93.

    Google Scholar 

  31. T. Chung: Computational Fluid Dynamics, Cambridge University Press, London, 2002, pp. 218–30.

    Google Scholar 

  32. R. Issa: J. Comp. Phys., 1985, vol. 62, pp. 40–65.

    Article  Google Scholar 

  33. R. Issa, A.D. Gossman, and A.P. Wilkins: J. Comp. Phys., 1991, vol. 93, pp. 388–410.

    Article  CAS  Google Scholar 

  34. FLUENT Inc., Lebanon, NH, 2004.

  35. O. Davila, R.D. Morales, J. Palafox, L. Ferro, L. Flores, J.A. Carranza, and H. Rodroguez-Hernandez: Research Report of Ladle Drain Dynamics in 2004 for Tubos de Acero de Mexico (TAMSA). Research developed at IPN-ESIQIE Ed 7 UPALM, Col. Zacatenco Mexico D/F. C07738, unpublished research, 2005.

  36. M. Dubke and K. Schwerdtfeger: Ironmaking and Steelmaking, 1990, vol. 17, pp. 184–92.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davila, O., Garcia-Demedices, L. & Morales, R.D. Mathematical simulation of fluid dynamics during steel draining operations from a ladle. Metall Mater Trans B 37, 71–87 (2006). https://doi.org/10.1007/s11663-006-0087-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0087-7

Keywords

Navigation