Skip to main content
Log in

Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three-dimensional numerical simulations were conducted to study temperature distributions and fluid flows during formation of humped beads in high speed gas metal arc welding (GMAW). Based on simulation and experimental results, the physical mechanisms associated with humping phenomenon were investigated and two conditions responsible for hump formation were identified: the formation of thin liquid channel induced by surface tension pinching force and premature solidification of the melt in the thin channel that divides the weld pool into a front and rear portion. A strong backward fluid flow that produced an accumulation of melt at the rear of the weld pool increased the size of humps. Although surface tension was shown to be important in hump formation, Marangoni flow induced by negative surface tension gradients was not significant for hump formation. The simulation results clarified the fluid flow associated with two different hump shapes. Experimental welds without bead humping were made at a lower travel speed and were also simulated to illustrate the differences in heat and fluid flow from humped beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B.J. Bradstreet: Weld. J., 1968, vol. 47 (7), pp. 314–22

    Google Scholar 

  2. J.W.S. Rayleigh: Phil. Mag., 1892, vol. 34, pp. 177–80

    Google Scholar 

  3. S.H. Davis: J. Fluid Mech., 1980, vol. 98, pp. 225–42

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Gao, A.A. Sonin: Proc. R. Soc. London, Ser. A, 1994, vol. 444, pp. 533–54

    Article  Google Scholar 

  5. S. Schiaffino, A.A. Sonin: J. Fluid Mech., 1997, vol. 343, pp. 95–110

    Article  Google Scholar 

  6. U. Gratzke, P.D. Kapadia, J. Dowden, J. Kroos, J. Simon: J Phys. D: Appl. Phys., 1992, vol. 25 (11), pp. 1640–47

    Article  Google Scholar 

  7. H.W. Choi, D.F. Farson, M.H. Cho: Weld. J., 2006, vol. 85 (8), pp. 174–79

    Google Scholar 

  8. W.F. Savage, E.F. Nippes, K. Agusa: Weld. J., 1979, vol. 58 (7), pp. 212–24

    Google Scholar 

  9. P.F. Mendez, T.W. Eagar: Weld. J., 2003, vol. 82 (10), pp. 296–306

    Google Scholar 

  10. T.C. Nguyen, D.C. Weckman, D.A. Johnson, H.W. Kerr: Sci. Technol. Weld. Joining, 2005, vol. 10 (4), pp. 447–59

    Article  Google Scholar 

  11. K.C. Mills, B.J. Keene: Int. Mater. Rev., 1990, vol. 35, pp. 185–216

    Google Scholar 

  12. K.C. Mills, B.J. Keene, R.F. Brooks, A. Shirali: Philos. Trans. R. Soc. London, Ser. A, 1998, vol. 356, pp. 911–25

    Article  Google Scholar 

  13. C.R. Heiple, J.R. Roper: Weld. J., 1982, vol. 61 (4), pp. 97–102.

    Google Scholar 

  14. C.R. Heiple, P. Burgardt: Weld. J., 1985, vol. 64 (6), pp. 159–62.

    Google Scholar 

  15. S. Kou, Y.H. Wang: Metall. Trans. A, 1986, vol. 17A, pp. 2271–77

    Google Scholar 

  16. T. Zacharia, S.A. David, J. Vitek: Metall. Trans. B, 1991, vol. 22B, pp. 243–57

    Google Scholar 

  17. M. Ushio, C.S. Wu: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 509–16

    Article  Google Scholar 

  18. S.H. Ko, D.F. Farson, S.K. Choi, C.D. Yoo: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1465–73

    Article  Google Scholar 

  19. Flow 3D Users Manual, Flow Science Inc., Santa Fe, NM, 2006

  20. M.H. Cho, Y.C. Lim, and D.F. Farson: Weld. J., 2006, vol. 85 (12), pp. 271-S–83-S

    Google Scholar 

  21. P. Sahoo, T. DebRoy, M. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483–91

    Google Scholar 

  22. A. Joseph, D. Harwig, D. Farson, R. Richardson: Sci. Technol. Weld. Joining, 2003, vol. 8 (6), pp. 400–06.

    Article  Google Scholar 

  23. J.H. Waszink, G.J.P.M. Van Den Heuvel: Weld. J., 1982, vol. 61 (8), pp. 269–82

    Google Scholar 

  24. M. Lu, S. Kou: Weld. J., 1988, vol. 67 (2), pp. 29–34

    Google Scholar 

  25. Y. Adonyi, R.W. Richardson, W.A. Baselack III: Weld. J., 1992, vol. 71 (9), pp. 321–30

    Google Scholar 

  26. M.L. Lin, T.W. Eagar: Metall. Trans. B, 1986, vol. 17B, pp. 601–07

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave F. Farson.

Additional information

Manuscript submitted May 10, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, M.H., Farson, D.F. Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation. Metall Mater Trans B 38, 305–319 (2007). https://doi.org/10.1007/s11663-007-9034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9034-5

Keywords

Navigation