Skip to main content
Log in

Numerical Simulation of the Multiphase Flow in the Rheinsahl–Heraeus (RH) System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Knowledge of gas–liquid multiphase flow behavior in the Rheinsahl–Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A g :

projected area of a single bubble, m2

C :

tracer concentration

CD :

drag coefficient

CVM :

virtual mass coefficient

C µ ,C1ε, C2ε, σk,σ ε :

constants in the turbulence model

d g :

bubble diameter, m

d o :

nozzle diameter, m

g :

gravitational acceleration vector, m/s2

k :

turbulent kinetic energy, m2/s2

L P :

penetration depth, m

p :

pressure, N/m2

r :

horizontal distance from the nozzle exit, m

Re b :

bubble Reynolds number

Sc :

turbulent Schmidt number

u :

velocity vector, m/s

u D,g :

drift velocity of gas phase, m/s

u g,l :

relative (slip) velocity, m/s

u g0 :

gas velocity at the nozzle exit, m/s

u T :

terminal velocity of gas bubble, m/s

V g :

bubble volume, m3

x, y, z :

the Cartesian coordinates, m

z o :

nozzle height, m

α :

volume fraction

ε :

turbulent energy dissipation rate, m2/s3

µ,µ T :

laminar viscosity and turbulent viscosity, kg/(m·s)

ρ :

density, kg/m3

σ :

surface tension, N/m

m,g,l:

mixture, gas, liquid

References

  1. V. Seshadri and S. Costa: Trans. ISIJ, 1986, vol. 26, pp. 133-38.

    Google Scholar 

  2. T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. ISIJ, 1988, vol. 28, pp. 305-13.

    CAS  Google Scholar 

  3. C. Kamata, S. Hayashi, and K. Ito: Tetsu-to-Hagane, 1998, vol. 84, pp. 484-89.

    CAS  Google Scholar 

  4. F. Obata, R. Waka, K. Uehara, K. Ito, and Y. Kawata: Tetsu-to-Hagane, 2000, vol. 86, pp. 225-30.

    CAS  Google Scholar 

  5. N.W. Yu: Ph.D. Dissertation, Shanghai University, Shanghai, China, 2001.

  6. K. Nakanishi, J. Szekely, and C.W. Chang: Ironmaking Steelmaking, 1975, vol. 5, pp. 115-24.

    Google Scholar 

  7. K. Shirabe and J. Szekely: Trans. ISIJ, 1983, vol. 23, pp. 465-74.

    CAS  Google Scholar 

  8. R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada: ISIJ Int., 1993, vol. 29, pp. 589-95.

    Article  Google Scholar 

  9. M. Szatkowski and M.C. Tsai: Iron Steelmaker, 1991, vol. 4, pp. 65-71.

    Google Scholar 

  10. Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, and S. Takatori: ISIJ Int., 1993, vol. 33, pp. 1088-94.

    Article  Google Scholar 

  11. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu: ISIJ Int., 2004, vol. 44, pp. 82-90.

    Article  CAS  Google Scholar 

  12. Y. Miki and B.G. Thomas: Iron Steelmaker, 1997, vol. 24, pp. 31-38.

    CAS  Google Scholar 

  13. A.H. Castillejos and J.K. Brimacombe: Metall. Trans. B, 1987, vol. 18B, pp. 659-71.

    Article  CAS  Google Scholar 

  14. B.K. Li and F. Tsukihashi: ISIJ Int., 2000, vol. 40, pp. 1203-09.

    Article  CAS  Google Scholar 

  15. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2000, vol. 40, pp. 749-55.

    Article  CAS  Google Scholar 

  16. B.K. Li and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 972-78.

    Article  CAS  Google Scholar 

  17. J.H. Wei and H.T. Hu: Steel Res. Int., 2006, vol. 77, pp. 32-35.

    CAS  Google Scholar 

  18. J.H. Wei and H.T. Hu: Steel Res. Int., 2006, vol. 77, pp. 91-96.

    CAS  Google Scholar 

  19. H. Saint-Raymond, D. Huin, and F. Stouvenot: Mater. Trans. JIM, 2000, vol. 41, pp. 17-21.

    CAS  Google Scholar 

  20. Y.G. Park and K.W. Yi: ISIJ Int., 2003, vol. 43, pp. 1403-09.

    Article  CAS  Google Scholar 

  21. N.J. Themelis, P. Tarassoff, and J. Szekely: Trans. TMS-AIME, 1969, vol. 245, pp. 2425-33.

    CAS  Google Scholar 

  22. E.O. Hoefele and J.K. Brimacombe: Metall. Trans. B, 1979, vol. 10B, pp. 631-48.

    Article  CAS  Google Scholar 

  23. M. Manninen and V. Taivassalo: “On the mixture model for multiphase flow”, VTT Publications 288, Technical Research Center of Finland, Espoo, Finland, 1996.

  24. C.G.. Mendez, N. Nigro, and A. Cardona: J. Mater. Process. Technol., 2005, vol. 160, pp. 296-305.

    Article  Google Scholar 

  25. N. Kubo, T. Ishii, J. Kubota, and N. Aramaki: ISIJ Int., 2002, vol. 42, pp. 1251-58.

    Article  CAS  Google Scholar 

  26. A. Ramos-Banderas, R.D. Morales, L. García-Demedices, and M. Diaz-Cruz: ISIJ Int., 2003, vol. 43, pp. 653-62.

    Article  CAS  Google Scholar 

  27. H. Yu and M. Zhu: ISIJ Int., 2008, vol. 48, pp. 584-91.

    Article  CAS  Google Scholar 

  28. N. Kubo, T. Ishii, J. Kubota, and T. Ikagawa: ISIJ Int., 2004, vol. 44. pp. 556-64.

    Article  CAS  Google Scholar 

  29. M. Iguchi and H. Tokunaga: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 695-702.

    Article  CAS  Google Scholar 

  30. M. Iguchi, Z. Morita, H.Tokunaga, and H. Tatemich: ISIJ Int., 1992, vol. 32, pp. 865-72.

    Article  CAS  Google Scholar 

  31. P. Chen, J. Sanyal, and M.P. Dudukovic: Chem. Eng. Sci., 2004, vol.59, pp. 5201-07.

    Article  CAS  Google Scholar 

  32. C.X. Lin and M.A. Ebadian: Comput. Fluids, 2008, vol. 37, pp. 965-74.

    Article  Google Scholar 

  33. J. Sanyal, S. Vasquez, S. Roy, and M.P. Dudukovic: Chem. Eng. Sci., 1999, vol. 54, pp. 5071-83.

    Article  CAS  Google Scholar 

  34. F. Qian, Z. Huang, G. Chen, and M. Zhang: Comput. Chem. Eng., 2007, vol. 31, pp. 1111-22.

    Article  CAS  Google Scholar 

  35. S.V. Patankar and D.B. Spalding: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1787-806.

    Article  Google Scholar 

  36. C.T. Crowe, M. Sommerfeld, and Y. Tsuji: Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton, FL, 1998.

    Google Scholar 

  37. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops, and Particles, Academic Press, New York, NY, 1978.

    Google Scholar 

  38. D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, Springer, New York, NY, 1998.

    Google Scholar 

  39. H. Turkoglu and B. Farouk: Metall. Trans. B, 1990, vol. 21B, pp. 771-81.

    Article  CAS  Google Scholar 

  40. T. Tatsuoka, C. Kamata, and K. Ito: ISIJ Int., 1997, vol. 37, pp. 557-61.

    Article  CAS  Google Scholar 

  41. M. Sano and K. Mori: Trans. ISIJ, 1980, vol. 20, pp. 675-81.

    Google Scholar 

  42. X. Han: Ph.D. Dissertation, Northeast University, Shenyang, China, 1995.

Download references

Acknowledgments

This work was supported by the National High-tech R&D Program of China (2009AA03Z530), National Natural Science Foundation of China and Shanghai Baosteel (50834010), SRF for ROCS (20071108-2), SEM and NEU, 111 Project (B07015), China Postdoctoral Science Foundation (20070421065), and Northeastern University Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-Qiao Geng.

Additional information

Manuscript submitted April 7, 2009.

Appendix

Appendix

Derivation for relative velocity in horizontal and vertical direction (Eqs. [21] and [22]):

In horizontal direction, Eq. [20] is written as follows:

$$ \left( {{\text{m}}_{\text{g}} + {\frac{ 1}{ 2}}V_{\text{g}} \rho_{\rm l} } \right){\frac{{du_{\text{g,l}}^{r} }}{dt}} = - {\frac{ 1}{ 2}}A_{\text{g}} \rho_{\text{g}} {\text{C}}_{\text{D}} u_{\text{g,l}}^{r2} $$
(A1)

We introduce the variables as follows:

$$ {\text{A}}^{*} = {\text{m}}_{\text{g}} + {\frac{ 1}{ 2}}V_{\text{g}} \rho_{\text{l}} $$
(A2)
$$ {\text{B}}^{*} = {\frac{ 1}{ 2}}A_{\text{g}} \rho_{\text{g}} {\text{C}}_{\text{D}} $$

Furthermore,

$$ u_{\text{g,l}}^{r} = {\frac{dr}{dt}} $$
(A3)

Substituting Eqs. [A2] and [A3] into Eq. [A1], we obtained the following:

$$ {\frac{{du_{\text{g,l}}^{r} }}{dr}} = - {\frac{{{\text{B}}^{*} }}{{{\text{A}}^{*}}}} \times u_{\text{g,l}}^{r} $$
(A4)

The boundary condition at r = 0 is as follows:

$$ u_{\text{g,l}}^{r} \left| {_{r = 0} } \right. = u_{{{\text{g,l}}, 0}}^{r} $$
(A5)

Integrating Eq. [A4], the horizontal component of relative velocity is as follows:

$$ u_{{\rm g,l}}^{r} = u_{{\rm g,l}, 0}^{r} \times { \exp }\left( { - {\frac{{{\text{B}}^{ *} }}{{{\text{A}}^{ *} }}} \times r} \right) = u_{{\rm g,l}, 0}^{r} \times { \exp }\left( { - {\frac{{ 3 {\text{C}}_{\text{D}} \rho_{\rm l} }}{{ 2d_{g} ( 2\rho_{\rm g} + \rho_{\rm l} )}}} \times r} \right) $$
(A6)

Here, because the liquid velocity at the wall is zero, the relative velocity of gas and liquid is equal to the gas velocity at the wall nodes, and then Eq. [21] is obtained as follows:

$$ u_{\text{g,l}}^{r} = u_{{{\text{g}}0}} \times { \exp }\left( { - {\frac{{ 3 {\text{C}}_{\text{D}} \rho_{\text{l}} }}{{ 2d_{g} ( 2\rho_{\text{g}} + \rho_{\text{l}} )}}} \times r} \right) $$
(21)

In vertical direction, Eq. [20] is written as follows:

$$ \left( {{\text{m}}_{\rm g} + {\frac{ 1}{ 2}}V_{\rm g} \rho_{\rm l} } \right){\frac{{du_{{\rm g,l}}^{z} }}{dt}} = - {\frac{ 1}{ 2}}A_{\text{g}} \rho_{\text{g}} {\text{C}}_{\text{D}} {u_{{{\text{g}},{\text{l}}}}^{z}}^2 + \rho_{\rm l} V_{\text{g}} g - \rho_{\rm g} V_{\text{g}} g $$
(A7)

Furthermore,

$$ u_{\text{g,l}}^{z} = {\frac{dz}{dt}} $$
(A8)

Substituting Eq. [A8] into Eq. [A7], we obtained the following:

$$ {\frac{{du_{\text{g,l}}^{z} }}{dz}} = {\text{m}}^{ *} u_{\text{g,l}}^{z} + {\text{n}}^{ *} {\frac{1}{{u_{\text{g,l}}^{z} }}} $$
(A9)

Here, \( {\text{m}}^{ *} = - {\frac{{{\text{B}}^{ *} }}{{{\text{A}}^{ *} }}} \) and \( {\text{n}}^{*} = {\frac{{\left( {\rho_{\rm l} - \rho_{\rm g} } \right)V_{\rm g} }}{{{\text{A}}^{*} }}} \). Note that Eq. [A9] is a Bernoulli differential equation. So we introduce the following variable:

$$ {\text{U}}^{ *} = {u_{\text{g,l}}^{z}}^2 $$
(A10)

and transform Eq. [A9] into a linear differential equation as follows:

$$ {\frac{1}{2}} {\cdot} {\frac{{d{\text{U}}^{ *} }}{dz}} = {\text{m}}^{ *} {\text{U}}^{ *} + {\text{n}}^{ *} $$
(A11)

Furthermore, the boundary condition for Eq. [A9] at z = z o is \( u_{{{\text{g}},{\text{l}}}}^{z} \left| {_{z = 0} } \right. = 0 \). Thus, the boundary condition for Eq. [A11] at z = z o is

$$ {\text{U}}^{ *} \left| {_{{z = z_{\text{o}} }} } \right. = 0 $$
(A12)

Integrating Eq. [A11], we obtain the following:

$$ {\text{U}}^{ *} = - {\frac{{{\text{n}}^{ *} }}{{{\text{m}}^{ *} }}}\left[ {1 - \exp \left( {{\text{m}}^{ *} \times (z - z_{\text{o}} )} \right)} \right] $$
(A13)

Substituting Eqs. [A2] and [A10] into Eq. [A13], Eq. [22] is as follows:

$$ u_{{\rm g,l}}^{z} = \sqrt {{\frac{{ 4(\rho_{\text{l}} - \rho_{\text{g}} )gd_{\text{g}} }}{{ 3\rho_{\text{l}} {\text{C}}_{\text{D}} }}}\left[ { 1 - { \exp }\left( { - {\frac{{ 3 {\text{C}}_{\text{D}} \rho_{\text{l}} }}{{ 2d_{g} ( 2\rho_{\text{g}} + \rho_{\text{l}} )}}} \times (z - z_{\text{o}} )} \right)} \right]} $$
(22)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, DQ., Lei, H. & He, JC. Numerical Simulation of the Multiphase Flow in the Rheinsahl–Heraeus (RH) System. Metall Mater Trans B 41, 234–247 (2010). https://doi.org/10.1007/s11663-009-9300-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-009-9300-9

Keywords

Navigation