Skip to main content
Log in

Computational Fluid Dynamics Simulation of Supersonic Oxygen Jet Behavior at Steelmaking Temperature

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Supersonic oxygen jets are used in steelmaking and other different metal refining processes, and therefore, the behavior of supersonic jets inside a high temperature field is important for understanding these processes. In this study, a computational fluid dynamics (CFD) model was developed to investigate the effect of a high ambient temperature field on supersonic oxygen jet behavior. The results were compared with available experimental data by Sumi et al. and with a jet model proposed by Ito and Muchi. At high ambient temperatures, the density of the ambient fluid is low. Therefore, the mass addition to the jet from the surrounding medium is low, which reduces the growth rate of the turbulent mixing region. As a result, the velocity decreases more slowly, and the potential core length of the jet increases at high ambient temperatures. But CFD simulation of the supersonic jet using the k−ε turbulence model, including compressibility terms, was found to underpredict the potential flow core length at higher ambient temperatures. A modified k-ε turbulence model is presented that modifies the turbulent viscosity in order to reduce the growth rate of turbulent mixing at high ambient temperatures. The results obtained by using the modified turbulence model were found to be in good agreement with the experimental data. The CFD simulation showed that the potential flow core length at steelmaking temperatures (1800 K) is 2.5 times as long as that at room temperature. The simulation results then were used to investigate the effect of ambient temperature on the droplet generation rate using a dimensionless blowing number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a :

Sound speed (m/s)

C P :

Specific heat (J/kg K)

d :

Nozzle diameter (m)

E :

Total energy (J)

F :

Volumetric gas flow rate (Nm3/s)

g:

Gravitational constant (m/s2)

k :

Turbulent kinetic energy (m2/s2)

K :

Thermal conductivity (W/mk)

l :

Turbulence length scale (m)

M τ :

Turbulence Mach number

N B :

Blowing number

Pr t :

Turbulent Prandtl number

P :

Pressure (Pa)

q :

Conduction heat flux (W/m2)

R :

Droplet generation rate (Kg/s)

\( r_{1/2} \) :

Width of the half value of axial velocity (m)

S :

Mean shear rate (s−1)

S p :

Spreading rate

T :

Mean temperature (K)

t′:

Fluctuating component of temperature (K)

T t :

Total temperature (K)

U :

Mean velocity (m/s)

u :

Fluctuating velocity (m/s)

ρ :

Density (kg/m3)

μ :

Molecular viscosity (Ns/m2)

μ t :

Turbulent viscosity (Ns/m2)

ε :

Turbulence dissipation rate (m2/s3)

σ :

Surface tension (N/m)

a:

Ambient

e:

Exit

G:

Gas

L:

Liquid

References

  1. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall, Upper Saddle River, NJ, 1993.

    Google Scholar 

  2. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Irons: ISIJ Int., 2003, vol. 43, pp. 983–89.

  3. P. McGee and G.A. Irons: Iron Steelmaker, 2002, vol. 29, pp. 59-68.

    Google Scholar 

  4. J.M. Luomala, T.L.J. Fabritius, E.O. Virtanen, T.P. Siivola, and J.J. Harkki: ISIJ Int., 2002, vol. 42, pp. 944–49.

    Article  CAS  Google Scholar 

  5. K.D. Peaslee and D.G.C. Robertson: EPD Congr. Proc., San Francisco, CA, 1994, pp. 1129-45.

    Google Scholar 

  6. B. Allemand, P. Bruchet, C. Champinot, S. Melen, and F. Porzucek: Rev. Metall., 2001, vol. 98, pp. 571-87.

    CAS  Google Scholar 

  7. R. Imai, K. Kawakami, S. Miyoshi, and S. Jinbo: Nippon Kokan Technical Report-Overseas, 1968, vol. 8, pp. 9-18.

    Google Scholar 

  8. I. Sumi, Y. Kishimoto, Y. Kikichi, and H. Igarashi: ISIJ Int., 2006, vol. 46, pp. 1312-17.

    Article  CAS  Google Scholar 

  9. Y. Tago and Y. Higuchi: ISIJ Int., 2003, vol. 43, pp. 209-15.

    Article  CAS  Google Scholar 

  10. J.C. Lau, P.J. Morris, and M.J. Fisher: J. Fluid Mech., 1979, vol. 93, pp. 1-27.

    Article  ADS  Google Scholar 

  11. K. Naito, Y. Ogawa, T. Inomoto, S. Kitamura, and M. Yano: ISIJ Int., 2000, vol. 40, pp. 23-30.

    Article  CAS  Google Scholar 

  12. H. Katanoda, Y. Miyazato, M. Masuda, and K. Matsu: The 10th Int. Symp. on Flow Visualization, Kyoto, Japan, 2002,

    Google Scholar 

  13. D. Papamoschou and A. Roshko: J. Fluid Mech., 1988, vol. 197, pp. 453- 77.

    Article  ADS  Google Scholar 

  14. B.E. Launder and D.B. Spalding: Computer Methods in Applied Mechanics and Engineering, 1974, vol. 3, pp. 269-89.

    Article  MATH  Google Scholar 

  15. S.B. Pope: AIAA J., 1978, vol. 16, pp. 279-81.

    Article  ADS  Google Scholar 

  16. S. Sarkar, G. Erlebacher, M.Y. Hussaini, and H.O. Kreiss: J. Fluid Mech., 1991, vol. 227, pp. 473-95.

    Article  ADS  MATH  Google Scholar 

  17. S. Heinz: Physics of Fluids, 2003, vol. 15, pp. 3580-83.

    Article  ADS  CAS  Google Scholar 

  18. K.S. Abdol-Hamid, S.P. Pao, S.J. Massey, and A. Elmiligui: ASME J. Fluids Eng., 2004, vol. 126, pp. 844-50.

    Article  Google Scholar 

  19. S. Ito and I. Muchi: Tetsu-To-Hagane, 1969, vol. 55, pp. 1152-63.

    Google Scholar 

  20. D.C. Wilcox: Turbulence Modelling for CFD, 2nd ed., DCW Industries, La Canada Flintridge, CA, 1998.

    Google Scholar 

  21. J.M. Seiner, M.K. Ponton, B.J. Jansen, and N.T. Lagen: DGLR/AIAA 14th Aeroacoustics Conference Proceedings, Aachen, Germany, 1992.

  22. T. Nonomura and K. Fujji: AIAA Applied Aerodynamics Conf., 2008

  23. Y.A. Cengel and J.M. Cimbala: Fluid Mechanics: Fundamentals and Applications, McGraw Hill, New York, NY, 2006.

    Google Scholar 

  24. AVL Fire: CFD Solver v8.5 Manual, AVL Fire, Graz, Austria, 2006.

  25. S.V. Patankar and D.B. Spalding: Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 1787-806.

    Article  MATH  Google Scholar 

  26. S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, MA, 2000.

    MATH  Google Scholar 

  27. R.I.L. Guthrie: Engineering in Process Metallurgy, Oxford University Press, New York, NY, 1989.

    Google Scholar 

  28. N. Dogan, G. Brooks, and M.A. Rhamdhani: ISIJ Int., 2009, vol. 49, pp. 24-28.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank One Steel, Melbourne for their financial support and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morshed Alam.

Additional information

Manuscript submitted December 16, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, M., Naser, J. & Brooks, G. Computational Fluid Dynamics Simulation of Supersonic Oxygen Jet Behavior at Steelmaking Temperature. Metall Mater Trans B 41, 636–645 (2010). https://doi.org/10.1007/s11663-010-9341-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9341-0

Keywords

Navigation