Skip to main content
Log in

A Thermodynamic Model of Phosphorus Distribution Ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 Slags and Molten Steel during a Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thermodynamic model for calculating the phosphorus distribution ratio between top–bottom combined blown converter steelmaking slags and molten steel has been developed by coupling with a developed thermodynamic model for calculating mass action concentrations of structural units in the slags, i.e., CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags, based on the ion and molecule coexistence theory (IMCT). Not only the total phosphorus distribution ratio but also the respective phosphorus distribution ratio among four basic oxides as components, i.e., CaO, MgO, FeO, and MnO, in the slags and molten steel can be predicted theoretically by the developed IMCT phosphorus distribution ratio prediction model after knowing the oxygen activity of molten steel at the slag–metal interface or the Fe t O activity in the slags and the related mass action concentrations of structural units or ion couples in the slags. The calculated mass action concentrations of structural units or ion couples in the slags equilibrated or reacted with molten steel show that the calculated equilibrium mole numbers or mass action concentrations of structural units or ion couples, rather than the mass percentage of components, can present the reaction ability of the components in the slags. The predicted total phosphorus distribution ratio by the developed IMCT model shows a reliable agreement with the measured phosphorus distribution ratio by using the calculated mass action concentrations of iron oxides as presentation of slag oxidation ability. Meanwhile, the developed thermodynamic model for calculating the phosphorus distribution ratio can determine quantitatively the respective dephosphorization contribution ratio of Fe t O, CaO + Fe t O, MgO + Fe t O, and MnO + Fe t O in the slags. A significant difference of dephosphorization ability among Fe t O, CaO + Fe t O, MgO + Fe t O, and MnO + Fe t O has been found as approximately 0.0 pct, 99.996 pct, 0.0 pct, and 0.0 pct during a combined blown converter steelmaking process, respectively. There is a great gradient of oxygen activity of molten steel at the slag–metal interface and in a metal bath when carbon content in a metal bath is larger than 0.036 pct. The phosphorus in molten steel beneath the slag–metal interface can be extracted effectively by the comprehensive effect of CaO and Fe t O in slags to form 3CaO·P2O5 and 4CaO·P2O5 until the carbon content is less than 0.036 pct during a top–bottom combined blown steelmaking process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

constant (–)

a i :

activity of components i in molten steel or in slags (–)

\( a_{{{\text{O, (Fe}}_{t} {\text{O)}} - [ {\text{O]}}}} \) :

calculated oxygen activity of molten steel at slag–metal interface based on (Fe t O)–[O] equilibrium (–)

\( a_{{{\text{O, [C]}} - [ {\text{O]}}}} \) :

calculated oxygen activity of molten steel based on [C]–[O] equilibrium (–)

\( a_{{{\text{O, (Fe}}_{t} {\text{O)}} - [ {\text{O]}}}}^{{{\text{slag}} - {\text{metal interface}}}} \) :

calculated oxygen activity of molten steel at slag–metal interface based on (Fe t O)–[O] equilibrium with replacing \( a_{{{\text{Fe}}_{t} {\text{O}}}} \) by \( N_{{{\text{Fe}}_{t} {\text{O}}}} \) (–)

\( a_{{{\text{O, [C]}} - [ {\text{O]}}}}^{\text{bath}} \) :

calculated oxygen activity of bulk molten steel based on [C]–[O] equilibrium (–)

B :

constant (–)

b i :

mole number of component i in 100-g slags (mol)

\( C_{{{\text{S}}^{ 2- } }} \) :

sulfide capacity of the slags (–)

\( e_{i}^{j} \) :

interaction coefficient of component j on component i in molten steel (–)

f i :

activity coefficient of component i in molten steel (–)

\( \Updelta_{\text{r}} G_{{{\text{m, }}i}}^{\Uptheta } \) :

standard molar Gibbs free energy change of forming complex molecule i in slags (J/mol)

\( \Updelta_{\text{fus}} G_{{{\text{m, }}i}}^{\Uptheta } \) :

standard molar Gibbs free energy change of melting component i or structural unit i from solid to liquid (J/mol)

\( \Updelta_{\text{sol}} G_{{{\text{m, }}i}}^{\Uptheta } \) :

standard molar Gibbs free energy change of dissolving component i or structural unit i into slags (J/mol)

(pct i):

mass percentage of component i in the slags (mass pct)

[pct i]:

mass percentage of component i in molten steel (mass pct)

\( K_{i}^{\Uptheta } \) :

equilibrium constant of chemical reaction for forming component i or structural unit i (–)

\( K_{i}^{'\Uptheta } \) :

equilibrium constant of chemical reaction for forming component i or structural unit i (–)

\( L_{\text{P}} \) :

phosphorus distribution ratio between slags and molten steel (–)

\( L_{\text{P}}^{'} \) :

calculated phosphorus distribution ratio between slags and molten steel based on molten steel oxidization ability with \( a_{{{\text{O, (Fe}}_{t} {\text{O)}} - [ {\text{O]}}}} \) by IMCT model (–)

\( L_{\text{S}} \) :

sulfur distribution ratio between slags and molten steel (–)

\( L_{{{\text{P, }}i}} \) :

calculated respective phosphorus distribution ratio of generated structural unit i containing P2O5 in slags based on slag oxidization ability by IMCT model (–)

\( L_{{{\text{P, }}i}}^{'} \) :

calculated respective phosphorus distribution ratio of generated structural unit i containing P2O5 in slags based on molten steel oxidization ability (–)

\( L_{\text{P, calculated}}^{\text{IMCT}} \) :

calculated total phosphorus distribution ratio between slags and molten steel based on slag oxidization ability by IMCT model (–)

\( L_{\text{P, calculated}}^{{ ' {\text{ IMCT}}}} \) :

calculated total phosphorus distribution ratio between slags and molten steel based on molten steel oxidization ability by IMCT model (–)

\( L_{\text{P, measured}} \) :

measured phosphorus distribution ratio (–)

\( L_{\text{P, calculated}}^{{ \, a_{{{\text{Fe}}_{t} {\text{O}}}} , {\text{ IMCT}}}} \) :

calculated total phosphorus distribution ratio between slags and molten steel based on slag oxidization ability with \( a_{{{\text{Fe}}_{t} {\text{O}}}} \) from \( a_{{{\text{O, [C]}} - [ {\text{O]}}}} \) via [C]–[O] equilibrium by IMCT model (–)

\( L_{\text{P, calculated}}^{{N_{{{\text{Fe}}_{t} {\text{O}}}} , {\text{ IMCT }}}} \) :

calculated total phosphorus distribution ratio between slags and molten steel based on slag oxidization ability with \( N_{{{\text{Fe}}_{t} {\text{O}}}} \) from (Fe t O)–[O] equilibrium by IMCT model (–)

\( L_{\text{P, calculated}}^{{ ' { }a_{{{\text{O, (Fe}}_{t} {\text{O)}} - [ {\text{O]}}}}^{{}} , {\text{ IMCT }}}} \) :

calculated total phosphorus distribution ratio between slags and molten steel based on molten steel oxidization ability with \( a_{{{\text{O, (Fe}}_{t} {\text{O)}} - [ {\text{O]}}}} \) from (Fe t O)–[O] equilibrium by IMCT model (–)

\( L_{\text{P, calculated}}^{{ ' { }a_{{{\text{O, [C]}} - [ {\text{O]}}}} , {\text{ IMCT}}}} \) :

calculated total phosphorus distribution ratio between slags and molten steel based on molten steel oxidization ability with \( a_{{{\text{O, [C]}} - [ {\text{O]}}}} \) from [C]–[O] equilibrium by IMCT model (–)

\( L_{{{\text{P, }}i , {\text{ calculated}}}}^{\text{IMCT}} \) :

calculated respective phosphorus distribution ratio between generated structural unit i containing P2O5 in slags and molten steel based on slag oxidization ability by IMCT model from calculated data (–)

\( L_{{{\text{P, }}i , {\text{ measured}}}}^{\text{IMCT}} \) :

calculated respective phosphorus distribution ratio of generated structural unit i containing P2O5 in slags based on slag oxidization ability by IMCT model from measured data (–)

\( L_{\text{P, calculated}}^{i} \) :

calculated phosphorus distribution ratio between slags and molten steel by model i (–)

Me:

metal (–)

MeO:

metal oxide in slags (–)

M i :

molecular mass of element i or component i (g/mol)

\( n_{i}^{0} \) :

mole number of component i in 100-g slags (mol)

n i :

equilibrium mole number of structural unit i or ion couple i in 100-g slags (mol)

N i :

mass action concentrations of structural unit i or ion couple i in the slags (–)

\( \sum n_{i} \) :

total equilibrium mole number of all structural units in 100-g slags (mol)

R :

gas constant (8.314 J/(mol K))

T :

absolute temperature (K)

\( [{\text{pct}}\,{\text{O}}]_{{[{\text{C}}] - [ {\text{O]}}}}^{{}} \) :

mass percentage of oxygen in molten steel based on [C]–[O] equilibrium (mass pct)

\( [{\text{pct O}}]_{{ ( {\text{Fe}}_{t} {\text{O)}} - [ {\text{O]}}}}^{{}} \) :

mass percentage of oxygen in molten steel based on (Fe t O)–[O] equilibrium (mass pct)

\( [{\text{pct O}}]_{{ ( {\text{Fe}}_{t} {\text{O)}} - [ {\text{O]}}}}^{{{\text{slag}} - {\text{metal interface}}}} \) :

calculated oxygen content of molten steel at slag–metal interface based on (Fe t O)–[O] equilibrium with replacing \( a_{{{\text{Fe}}_{t} {\text{O}}}} \) by \( N_{{{\text{Fe}}_{t} {\text{O}}}} \) (–)

\( [{\text{pct O}}]_{{[{\text{C}}] - [ {\text{O]}}}}^{\text{bath}} \) :

calculated oxygen content of molten steel in metal bath based on [C]–[O] equilibrium (–)

\( \Uplambda \) :

optical basicity of the slags (–)

\( \Uplambda_{i} \) :

optical basicity of component i in the slags (–)

\( \mu_{{i({\text{s}})}}^{ * } \) :

chemical potential of component i as solid (J/mol)

\( \mu_{{i({\text{l}})}}^{ * } \) :

chemical potential of component i as liquid (J/mol)

\( \mu_{i}^{\Uptheta } \) :

standard chemical potential of dissolved component i in slags (J/mol)

ci :

complex molecule i (–)

References

  1. T.B. Winkler and J. Chipman: Trans. AIME, 1946, vol. 167, pp. 111-33.

    Google Scholar 

  2. K. Balajiva, A.G. Quarrell, and P. Vajragupta: J. Iron Steel Inst., 1946, vol. 153, pp. 115-50.

    Google Scholar 

  3. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, vol. 1, Academic Press, London, UK, 1974, pp. 87-135.

    Google Scholar 

  4. C. Nassaralla and R.J. Fruehan: Metall. Mater. Trans. B, 1992, vol. 23B, pp. 117-23.

    CAS  Google Scholar 

  5. A.T. Morales and R.J. Fruehan: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1111-18.

    Article  CAS  Google Scholar 

  6. S. Basu, A.K. Lahiri, S. Seetharaman, and J. Halder: ISIJ Int., 2007, vol. 47, no. 5, pp. 766-68.

    Article  CAS  Google Scholar 

  7. S. Basu, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 357-66.

    Article  CAS  Google Scholar 

  8. 8. S. Basu, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 623-30.

    Article  CAS  Google Scholar 

  9. K. Ide and R.J. Fruehan: Iron Steelmaker, 2000, vol. 27, no. 12, pp. 65-70.

    CAS  Google Scholar 

  10. G.W. Healy: J. Iron Steel Inst., 1970, vol. 208, pp. 664-68.

    CAS  Google Scholar 

  11. H. Suito and R. Inoue: ISIJ Int., 1984, vol. 24, no. 1, pp. 40-46.

    Article  CAS  Google Scholar 

  12. H. Suito, R. Inoue, and M. Takada: ISIJ Int., 1981, vol. 21, no. 4, pp. 250-59.

    Article  CAS  Google Scholar 

  13. I.D. Sommerville, X.F. Zhang, and J.M. Toguri: Trans. Iron Steel Soc., 1985, vol. 6, pp. 29-42.

    Google Scholar 

  14. K. Balajiva, A.Q. Quarrel, and P. Vajragupta: J. Iron Steel Inst., 1946, vol. 153, pp. 115-45.

    Google Scholar 

  15. S.K. Choudhary, S.N. Lenka, and A. Ghosh: Ironmaking Steelmaking, 2007, vol. 34, no. 4, pp. 343-49.

    Article  CAS  Google Scholar 

  16. B. Deo, J. Halder, B. Snoeijer, A. Overbosch, and R. Boom: Ironmaking Steelmaking, 2005, vol. 32 (1), pp. 54–60.

  17. W.H. Niekerk and R.J. Dippenaar: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 147-53.

    Article  Google Scholar 

  18. M. Ishikawa: ISIJ Int., 2006, vol. 46, no. 4, pp. 530-38.

    Article  CAS  Google Scholar 

  19. J. Pal, S. Ghorai, D.P. Singh, A.K. Upadhyay, S. Ghosh, D. Ghosh, and D. Bandyopadhyay: ISIJ Int., 2010, vol. 50, no. 1, pp. 105-14.

    Article  CAS  Google Scholar 

  20. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  21. J. Zhang: Acta Metall. Sinica (English Lett.), 2001, vol. 14, no. 3, pp. 177-90.

    CAS  Google Scholar 

  22. J. Zhang: J. Univ. Sci. Technol. Beijing, 2002, vol. 9, no. 2, pp. 90-98.

    CAS  Google Scholar 

  23. J. Zhang: Rare Metals, 2004, vol. 23, no. 3, pp. 209-13.

    CAS  Google Scholar 

  24. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, and H.J. Guo: ISIJ Int., 2009, vol. 49, no. 12, pp. 1828-37.

    Article  CAS  Google Scholar 

  25. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, and H.J. Guo: ISIJ Int., 2010, vol. 50, no. 10, pp. 1362-72.

    Article  CAS  Google Scholar 

  26. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang: unpublished research.

  27. Verein Deutscher Eisenhüttenleute, Slag Atlas, 2nd ed., Woodhead Publishing Limited, Abington, Cambridge, UK, 1995.

  28. J.X. Chen: Handbook of Common Figures, Tables and Data for Steelmaking, Metallurgical Industry Press, Beijing, China, 1984.

    Google Scholar 

  29. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 8-12.

    Google Scholar 

  30. R.H. Rein and J. Chipman: Trans. Met. Soc. AIME, 1965, vol. 233, no. 2, pp. 415-25.

    CAS  Google Scholar 

  31. H. Gaye and J. Welfringer: Proc. Second International Symposium on Metallurgical Slags and Fluxes, H.A. Fine and D.R. Gaskell, eds., Lake Tahoe, NV, TMS–AIME, 1984, pp. 357–75.

  32. K. Narita and K. Shinji: Kobe Steel Engin. Rep., 1969, vol. 19, pp. 25-42.

    Google Scholar 

  33. The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, NY, 1988.

  34. S. Ban-ya, A. Chiba, and A. Hirosaka: Tetsu-to-Hagané, 1980, vol. 66, no. 10, pp. 1484-93.

    CAS  Google Scholar 

  35. M. Timucin and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, no. 6, pp. 1399-1406.

    Article  CAS  Google Scholar 

  36. I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Supplement, Springer-Verlag, New York, NY, 1977, pp. 392-445.

    Google Scholar 

  37. O. Knacke, O. Kubaschewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer–Verlag, New York, NY, 1991, pp. 47, 1136, 1836.

  38. J.B. Bookey: J Iron Steel Inst., 1952, vol. 172, pp. 61-66.

    CAS  Google Scholar 

  39. S.K. Wei: Thermodynamics of Metallurgical Processes (series book of modern metallurgy), Shanghai Scientific & Technical Publishers, Shanghai, China, 1980, pp. 52, 292, 396–98.

  40. R.G. Ward: An Introduction to the Physical Chemistry of Iron and Steel-Making, Edward Arnold Publishers Ltd., London, UK, 1962, pp. 122-40.

    Google Scholar 

  41. J. Zhang: J. Beijing Univ. Iron Steel Technol., 1986, vol. 8, pp. 1-6.

    CAS  Google Scholar 

  42. J. Zhang: J. Beijing Univ. Iron Steel Technol., 1988, vol. 10, pp. 1-6.

    CAS  Google Scholar 

  43. P. Wang, T.W. Ma, and J. Zhang: Iron Steel, 1996, vol. 31, pp. 27-31.

    CAS  Google Scholar 

  44. J. Zhang and C. Wang: J. Univ. Sci. Technol. Beijing, 1991, vol. 13, pp. 214-21.

    CAS  Google Scholar 

  45. J. Zhang and W.X. Yuan: J. Univ. Sci. Technol. Beijing, 1995, vol. 17, pp. 418-23.

    CAS  Google Scholar 

  46. J. Zhang: Acta Metall. Sinica, 1998, vol. 34, pp. 742-52.

    CAS  Google Scholar 

  47. J. Zhang and P. Wang: CALPHAD, 2001, vol. 25, pp. 343-54.

    Article  CAS  Google Scholar 

  48. H. Guo, Y.T. Hu, D.Q. Cang, Y. Jin, L.X. Wang, X.L. Cheng, H. Bai, and Y.B. Zong: Chinese Chem. Lett., 2010, vol. 21, pp. 229-33.

    Article  CAS  Google Scholar 

  49. J.Y. Zhang: Metallurgical Physicochemistry, Metallurgical Industry Press, Beijing, China, 2004, pp. 42-43.

    Google Scholar 

  50. E.T. Turkdogan: J Iron Steel Inst., 1953, vol. 175, pp. 398-401.

    CAS  Google Scholar 

  51. H. Suito and R. Inoue: Trans. ISIJ, 1984, vol. 24, no. 4, pp. 301-07.

    Article  CAS  Google Scholar 

  52. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, no. 9, pp. 298-310.

    CAS  Google Scholar 

  53. D.J. Sosinsky and I.D. Sommerville: Metall. Trans. B, 1986, 17B, 331-37.

    Article  CAS  Google Scholar 

  54. T. Nakamura, Y. Ueda, and J. M. Toguri: Proc. Third International Conference on Metallurgical Slags and Fluxes, The Institute of Metals, London, UK, 1988, pp. 146-49.

    Google Scholar 

  55. K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Min Yang.

Additional information

Manuscript submitted October 20, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XM., Duan, JP., Shi, CB. et al. A Thermodynamic Model of Phosphorus Distribution Ratio between CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 Slags and Molten Steel during a Top–Bottom Combined Blown Converter Steelmaking Process Based on the Ion and Molecule Coexistence Theory. Metall Mater Trans B 42, 738–770 (2011). https://doi.org/10.1007/s11663-011-9491-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9491-8

Keywords

Navigation