Skip to main content
Log in

Transient Inclusion Evolution During Modification of Alumina Inclusions by Calcium in Liquid Steel: Part I. Background, Experimental Techniques and Analysis Methods

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In aluminum-killed steels, modification of solid alumina inclusions is often carried out by calcium treatment, converting the alumina to liquid calcium aluminates. When calcium treatment is performed, calcium can either react with sulfur in the melt or with solid alumina. Calcium sulfide inclusions are solid at steel casting temperatures and thus would be detrimental to castability if they remained in the steel after calcium treatment. The aim was to study the transient evolution of inclusions after calcium treatment, testing the hypothesis that calcium sulfide may form as an intermediate reaction product, which can subsequently react with alumina to form modified calcium aluminates. The first part gives the project background and describes the experimental and quantification techniques adopted, including the effect of sampler size in laboratory melts. Results of the formation of intermediate calcium reaction products in laboratory and industrial heats are presented in the second part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.W. Cramb: in Impurities in Engineering Materials, C.L. Briant, ed., Marcel Dekker, New York, NY, 1999, pp. 49–89.

  2. G.J.W. Kor: Proc. First Int. Calcium Treatment Symp., The Institute of Metals, London, U.K., 1988, pp. 39-44.

    Google Scholar 

  3. N. Verma, M. Lind, P.C. Pistorius, R.J. Fruehan, and M. Potter: Iron Steel Tech., 2010, vol. 7, no. 7, pp. 189-97.

    Google Scholar 

  4. G.M. Faulring, J.W. Farrell, and D.C. Hilty: Iron Steelmaker, 1980, vol. 7, no. 2, pp. 14-20.

    Google Scholar 

  5. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, Hemel Hempstead, U.K., 1993, pp. 265-69.

    Google Scholar 

  6. G.J.W. Kor: The Elliott Symposium, Iron and Steel Society, Warrendale, PA, 1990, pp. 400-17.

    Google Scholar 

  7. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189-228.

    Article  CAS  Google Scholar 

  8. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298-310.

    CAS  Google Scholar 

  9. D. Lu, G.A. Irons, and W.K. Lu: Proc. First Int. Calcium Treatment Symp., The Institute of Metals, London, U.K., 1988, pp. 23-30.

    Google Scholar 

  10. Y. Higuchi, M. Numata, S. Fukagawa, and K. Shinme: ISIJ Int., 1996, vol. 36, pp. S151-S154.

    Article  Google Scholar 

  11. W. Tiekink, B. Santillana, R. Boom, R. Kooter, F. Mensonides, and B. Deo: Iron Steel Tech., 2008, vol. 5, no. 9, pp. 185-95.

    Google Scholar 

  12. J.C. Anglezio, C. Servant, and I. Ansara: CALPHAD, 1994, vol. 18, pp. 273-309.

    Article  CAS  Google Scholar 

  13. I.-H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  CAS  Google Scholar 

  14. J.M.A. Geldenhuis and P.C. Pistorius: Ironmaking Steelmaking, 2000, vol. 27, pp. 442-49.

    Article  CAS  Google Scholar 

  15. Y. Wang, M. Valdez, and S. Sridhar: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 625-32.

    Article  CAS  Google Scholar 

  16. H. Matsuura, C. Wang, G. Wen, and S. Sridhar: ISIJ Int., 2007, vol. 48, pp. 1265-74.

    Article  Google Scholar 

  17. S.R. Story, T. Piccone, R.J. Fruehan, and M. Potter: Iron Steel Tech., 2004, vol. 1, no. 9, pp. 163-69.

    CAS  Google Scholar 

  18. T.R. Dulski: A Manual for the Chemical Analysis of Metals, American Society for Testing and Materials, West Conshohocken, PA, 1996, pp. 89-90.

    Book  Google Scholar 

  19. R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010, http://www.R-project.org/.

  20. J.J. Flannery: Canadian Cartographer, 1971, vol. 8, pp. 96-109.

    Google Scholar 

  21. E.T. Turkdogan: Arch. Eisenhuettenwes., 1983, vol. 54, pp. 1-10.

    CAS  Google Scholar 

Download references

Acknowledgments

Support for this work by the industrial members of the Center for Iron and Steelmaking Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus C. Pistorius.

Additional information

Manuscript submitted February 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, N., Pistorius, P.C., Fruehan, R.J. et al. Transient Inclusion Evolution During Modification of Alumina Inclusions by Calcium in Liquid Steel: Part I. Background, Experimental Techniques and Analysis Methods. Metall Mater Trans B 42, 711–719 (2011). https://doi.org/10.1007/s11663-011-9516-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9516-3

Keywords

Navigation