Skip to main content
Log in

Effect of Complex Inclusion Particles on the Solidification Structure of Fe-Ni-Mn-Mo Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

The effect of combinations of several deoxidizers, i.e., Mg-Al, Mg-Ti, Al-Ti, and Ce-Al, on the solidification structure of Fe-2 mass pct Ni-1 mass pct Mn-1 mass pct Mo alloy melt was investigated using a melt sampling and quenching method. Using this method, we evaluated the catalytic potency of several complex inclusion particles by taking the inclusion evolution process into account. Fine equiaxed crystals were obtained in the Mg-Ti-deoxidized steel wherein the MgO(MgAl2O4)-TiN complex compounds formed. However, the longer the holding time at high temperatures, the larger the fraction of Ti2O3, and very fine TiN formed because of microsegregation during solidification, resulting in poor equiaxed crystals. When the steel was deoxidized with Mg-Al, the initial structure was dominantly columnar. However, the longer the holding time, the larger the fraction of MgAl2O4 spinel, resulting in the formation of fine equiaxed crystals. Ce-Al complex deoxidation provided a relatively small portion of equiaxed crystals, whereas Ti-Al deoxidation produced the fewest equiaxed crystals because of the formation of alumina. The effectiveness of each inoculant particle for the crystallization of the primary δ-iron was explained well by the lattice disregistry concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ø. Grong: Metallurgical Modeling of Welding, 2nd edition, Institute of Materials, London, 1997, pp. 221-300.

    Google Scholar 

  2. Ø. Grong and D.K. Matlock: Int. Met. Rev., 1986, vol. 31, pp. 27-48.

    Article  CAS  Google Scholar 

  3. O.M. Akselsen, Ø. Grong, and P.E. Kvaale: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 1529-36.

    CAS  Google Scholar 

  4. J. Takamura and S. Mizuguchi: Proc. 6th Int. Iron Steel Cong., vol. 3, ISIJ, Tokyo, 1990, pp. 591-97.

    Google Scholar 

  5. E.A. Metzbower, H.K.D.H. Bhadeshia, and R.H. Phillips: Mater. Sci. Technol., 1994, vol. 10, pp. 56-59.

    Article  CAS  Google Scholar 

  6. Z. Yang and T. Debroy: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 483-93.

    Article  CAS  Google Scholar 

  7. T. Koseki and G. Thewlis: Mater. Sci. Technol., 2005, vol. 21, pp. 867-79.

    Article  CAS  Google Scholar 

  8. G. Thewlis: Mater. Sci. Technol., 2006, vol. 22, pp. 153-66.

    Article  CAS  Google Scholar 

  9. K.S. Bang, C. Park, and S. Liu: J. Mater. Sci., 2006, vol. 41, pp. 5994-6000.

    Article  CAS  Google Scholar 

  10. T. Koseki, H. Kato, M. Tsutsumi, K. Kasaki, and J. Inoue: Int. J. Mater. Res., 2008, vol. 99, pp. 347-51.

    Article  CAS  Google Scholar 

  11. H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, and N.J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3350-57.

    Article  Google Scholar 

  12. H. Suito, A.V. Karasev, M. Hamada, and R. Inoue, and K. Nakajima: ISIJ Int., 2011, vol. 51, pp. 1151-62.

    Article  CAS  Google Scholar 

  13. J.L. Caron, S.S. Babu, and J.C. Lippold: Metall. Mater. Trans. A, 2011, vol. 42, pp. 4015-31.

    Article  Google Scholar 

  14. A.O. Kluken, Ø. Grong and G. Rørvik: Metall. Trans. A., 1990, vol. 21A, pp. 2047-58.

    CAS  Google Scholar 

  15. H. Terasaki and Y. Komizo: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 561-66.

    Article  CAS  Google Scholar 

  16. T. Yamada, H. Terasaki and Y. Komizo: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 118-25.

    Article  CAS  Google Scholar 

  17. T. Koseki, S. Ohkita and N. Yurioka: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 65-9.

    Article  CAS  Google Scholar 

  18. Y. Ito and M. Nakanishi: Sumitomo Search, 1976, vol. 15, pp. 42-62.

    CAS  Google Scholar 

  19. N. Mori, H.Homma, M. Wakabayshi and S. Ohkita: J. Jpn. Weld. Soc., 1981, vol. 50, pp. 786-93.

    Article  CAS  Google Scholar 

  20. T. Nishizawa: ISIJ Int., 2000, vol. 40, pp. 1269-74.

    Article  CAS  Google Scholar 

  21. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, pp. 1987-95.

    Article  CAS  Google Scholar 

  22. T. Ohashi, T. Hiromoto, H. Fujii, Y. Nuri and K. Asano: Tetsu-to-Hagané, 1976, vol. 62, pp. 614-23.

    CAS  Google Scholar 

  23. K. Nakajima, H. Hasegawa, S. Khumkoa and S. Mizoguchi: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 539-47.

    Article  CAS  Google Scholar 

  24. K. Nakajima, H. Ohta, H. Suito and P. Jönsson: ISIJ Int., 2006, vol. 46, pp. 807-13.

    Article  CAS  Google Scholar 

  25. K. Sakata and H. Suito: Metall. Mater. Trans. B., 1999, vol. 30B, pp. 1053-63.

    Article  CAS  Google Scholar 

  26. M. Guo and H. Suito: ISIJ Int., 1999, vol. 39B, pp. 722-29.

    Article  Google Scholar 

  27. G.V. Pervushin and H. Suito: ISIJ Int., 2001, vol. 41, pp. 728-37.

    Article  CAS  Google Scholar 

  28. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 22-28.

    Article  CAS  Google Scholar 

  29. J.H. Park: CALPHAD, 2011, vol. 35, pp. 455-62.

    Article  CAS  Google Scholar 

  30. T. Koseki, H. Inoue, Y. Fukuda and A. Nogami: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 183-95.

    Article  CAS  Google Scholar 

  31. S. Mridha, D.H. Jack: Metallography, vol. 15, 1982, pp. 163-75.

    Article  CAS  Google Scholar 

  32. J.H. Park, D.J. Kim, and D.J. Min: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2316-24.

    Article  Google Scholar 

  33. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010, pp. 10-34.

    Google Scholar 

  34. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.

    Article  CAS  Google Scholar 

  35. D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994, pp. 62-71.

    Google Scholar 

  36. www.factsage.com (accessed October 2011).

  37. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295-311.

    Article  CAS  Google Scholar 

  38. J.H. Park and Y.B. Kang: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 791-98.

    Article  CAS  Google Scholar 

  39. J.H. Park, S.B. Lee and H.R. Gaye: Metall. Mater. Trans. B, 2008, vol. 39, pp. 853-61.

    Article  Google Scholar 

  40. G.V. Pervushin and H. Suito: ISIJ Int., 2001, vol. 41, pp. 748-56.

    Article  CAS  Google Scholar 

  41. J.H. Park, J.S. Park, Y. Huh, and C.H. Lee: unpublished research.

  42. T. Koseki and H. Inoue: J. Jpn Inst. Met., 2001, vol. 65, pp. 644-51.

    CAS  Google Scholar 

  43. T. Koseki: Bull. Iron Steel Inst. Japan, 2010, vol. 15, pp. 30-35.

    CAS  Google Scholar 

  44. H. Fujimura, S. Tsuge, Y. Komizo and T. Nishizawa: Tetsu-to-Hagané, 2001, vol. 87, pp. 29-34.

    Google Scholar 

  45. K. Isobe: ISIJ Int., 2010, vol. 50, pp. 1972-80.

    Article  CAS  Google Scholar 

  46. M. Wako and N. Sano: ISIJ Int., 2007, vol. 47, pp. 627-32.

    Article  Google Scholar 

  47. G. Fiquet, P. Richet and G. Montagnac: Phys. Chem. Minerals, 1999, vol. 27, pp. 103-11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Seok Park.

Additional information

Manuscript submitted: December 1, 2011.

Appendix

Appendix

To illustrate the calculation of disregistry, we provide examples for several oxide inclusions nucleating TiN.[21] In these examples, the MgAl2O4 spinel, Al2O3, MgO, and Ti2O3 were selected as nucleation sites for TiN. The crystallographic relationships of each case are illustrated in Figures A1 and A2, and the corresponding parameters for Eq. [4] are listed in Table IV.

Fig. A1
figure 14

The crystallographic relationship at the interface between (100)TiN and (100)MgAl2O4 (a), and between (100)TiN and (100)MgO (b)

Fig. A2
figure 15

The crystallographic relationship at the interface between (100)TiN and (0001)Ti2O3 (a), and between (100)TiN and (0001)Al2O3 (b)

Table IV Parameters Used for the Disregistry Calculations

Case I; MgAl2O4(100)//TiN(100)

As shown in Figure A1(a), the (100) plane of TiN is superimposed on the (100) plane of spinel. The three lowest-index directions of TiN and MgAl2O4 are \( \left[ {\overline{1} 00} \right] \), \( \left[ {\overline{1} 10} \right] \) and \( \left[ {010} \right] \). The distances along these directions are given in Table IV. In accordance with Eq. [4], the disregistry equation for Case 1 was written as follows:

$$ \delta_{{\left( {100} \right)_{\text{TiN}} }}^{{\left( {100} \right)_{{{\text{MgAl}}_{ 2} {\text{O}}_{ 4} }} }} = \frac{1}{3}\left( {\frac{{\left| {(d_{{\left[ {\overline{1} 00} \right]_{{{\text{MgAl}}_{ 2} {\text{O}}_{ 4} }} }} \cos \theta ) - d_{{[\overline{1} 00]_{\text{TiN}} }} } \right|}}{{d_{{[\overline{1} 00]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[\overline{1} 10]_{{{\text{MgAl}}_{ 2} {\text{O}}_{ 4} }} }} \cos \theta ) - d_{{[\overline{1} 10]_{\text{TiN}} }} } \right|}}{{d_{{[\overline{1} 10]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[010]_{{{\text{MgAl}}_{ 2} {\text{O}}_{ 4} }} }} \cos \theta ) - d_{{[010]_{\text{TiN}} }} } \right|}}{{d_{{[010]_{\text{TiN}} }} }}} \right) \times 100 = \frac{1}{3}\left( {\frac{{\left| {4.098 - 4.308} \right|}}{4.308} + \frac{{\left| {2.897 - 3.046} \right|}}{3.046} + \frac{{\left| {4.098 - 4.308} \right|}}{4.308}} \right) \times 100 = 4.88\,{\text{pct}}$$

Case II; MgO(100)//TiN(100)

As shown in Figure A1(b), the (100) plane of TiN is superimposed on the (100) plane of MgO. Using a similar analysis to that used in Case I, Eq. [4] was written as follows:

$$ \delta_{{(100)_{\text{TiN}} }}^{{(100)_{\text{MgO}} }} = \frac{1}{3}\left( {\frac{{\left| {(d_{{[\overline{1} 00]_{\text{MgO}} }} \cos \theta ) - d_{{[\overline{1} 00]_{\text{TiN}} }} } \right|}}{{d_{{[\overline{1} 00]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[\overline{1} 10]_{\text{MgO}} }} \cos \theta ) - d_{{[\overline{1} 10]_{\text{TiN}} }} } \right|}}{{d_{{[\overline{1} 10]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[010]_{\text{MgO}} }} \cos \theta ) - d_{{[010]_{\text{TiN}} }} } \right|}}{{d_{{[010]_{\text{TiN}} }} }}} \right) \times 100 = \frac{1}{3}\left( {\frac{{\left| {4.310 - 4.308} \right|}}{4.308} + \frac{{\left| {3.048 - 3.046} \right|}}{3.046} + \frac{{\left| {4.310 - 4.308} \right|}}{4.308}} \right) \times 100 = 0.053\,{\text{pct}} $$

Case III; Ti2O3(0001)//TiN(100)

Because the lattice disregistry is 23.46 pct for the (110) plane of TiN and 48.36 pct for the (111) plane of TiN, the (100) of TiN is superimposed on the (0001) plane of Ti2O3, as shown in Figure A2(a). Equation [4] was therefore written as:

$$ \delta_{{(100)_{\text{TiN}} }}^{{(0001)_{{{\text{Ti}}_{ 2} {\text{O}}_{ 3} }} }} = \frac{1}{3}\left( {\frac{{\left| {(d_{{[\overline{1} 2\overline{1} 0]_{{{\text{Ti}}_{ 2} {\text{O}}_{ 3} }} }} \cos \theta ) - d_{{[010]_{\text{TiN}} }} } \right|}}{{d_{{[001]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[\overline{2} 110]_{{{\text{Ti}}_{ 2} {\text{O}}_{ 3} }} }} \cos \theta ) - d_{{[011]_{\text{TiN}} }} } \right|}}{{d_{{[1\overline{1} 1]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[\overline{1} 010]_{{{\text{Ti}}_{ 2} {\text{O}}_{ 3} }} }} \cos \theta ) - d_{{[001]_{\text{TiN}} }} } \right|}}{{d_{{[1\overline{1} 0]_{\text{TiN}} }} }}} \right) \times 100 = \frac{1}{3}\left( {\frac{{\left| {3.146 - 4.308} \right|}}{4.308} + \frac{{\left| {3.039 - 3.046} \right|}}{3.046} + \frac{{\left| {5.225 - 4.308} \right|}}{4.308}} \right) \times 100 = 16.17\,{\text{pct}}$$

Case IV; Al2O3(0001)//TiN(100)

Because the lattice disregistry of the (110) plane of TiN is 23.7 pct and that of the (111) plane of TiN is 51.7 pct, the (100) plane of TiN is superimposed on the (0001) of Al2O3, as shown in Figure A2(b). Using a similar analysis as in Case III yielded the following Eq. [4]:

$$ \delta_{{(100)_{\text{TiN}} }}^{{(0001)_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }} }} = \frac{1}{3}\left( {\frac{{\left| {(d_{{[\overline{1} 2\overline{1} 0]_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }} }} \cos \theta ) - d_{{[010]_{\text{TiN}} }} } \right|}}{{d_{{[010]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[\overline{2} 110]_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }} }} \cos \theta ) - d_{{[011]_{\text{TiN}} }} } \right|}}{{d_{{[011]_{\text{TiN}} }} }} + \frac{{\left| {(d_{{[\overline{1} 010]_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }} }} \cos \theta ) - d_{{[001]_{\text{TiN}} }} } \right|}}{{d_{{[001]_{\text{TiN}} }} }}} \right) \times 100 = \frac{1}{3}\left( {\frac{{\left| {2.905 - 4.308} \right|}}{4.308} + \frac{{\left| {2.806 - 3.046} \right|}}{3.046} + \frac{{\left| {4.825 - 4.308} \right|}}{4.308}} \right) \times 100 = 17.48\,{\text{pct}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Lee, C. & Park, J.H. Effect of Complex Inclusion Particles on the Solidification Structure of Fe-Ni-Mn-Mo Alloy. Metall Mater Trans B 43, 1550–1564 (2012). https://doi.org/10.1007/s11663-012-9734-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-012-9734-3

Keywords

Navigation