Skip to main content
Log in

Investigation of the Freeze-Lining Formed in an Industrial Copper Converting Calcium Ferrite Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Pyrometallurgical coppermaking processes are operated under intensive reaction conditions; high process temperatures and vigorous bath agitation is used to increase the kinetics of reactions and to achieve high smelter throughput. Slag freeze-lining reactor wall protection is a widely used technology in coppermaking processes, such as flash smelting and converting reactors. Freeze-linings mitigate and resist the effects of thermal and chemical attack by aggressive slags. In this laboratory-based study, a water-cooled probe “cold finger” technique has been used to investigate freeze-lining formation with calcium ferrite slags in equilibrium with metallic copper; the slag composition reflects that used in the industrial copper flash converting furnace of Rio Tinto—Kennecott Utah Copper. The effects of probe immersion times on the thickness and microstructures in the freeze-lining deposits have been investigated. A range of complex oxide solutions and copper-containing phases have been found in the deposits. The phase assemblages formed from the industrial calcium ferrite slag in the steady-state deposit are very complex and information on the phase equilibria of the multi-component systems with addition of minor elements may not be available. Subsolidus and subliquidus phase equilibria in the Cu-Ca-Fe-O system at metallic copper saturation along with interpolated temperature across the deposit, microstructural changes and compositional trends in the phases in the deposit have been used to understand the formation and characteristics of the phases in the steady-state freeze-lining. Also, it has been shown that under steady-state conditions a dense sealing layer consisting primarily of the spinel primary phase is formed at the deposit/liquid interface; however, the interface temperature is below the liquidus temperature. The findings of the study have potentially important implications for the operation of the converting furnace and the design of freeze linings in metallurgical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas: Extractive Metallurgy of Copper. 4th ed., Elsevier Science Ltd., Oxford, 2002.

    Google Scholar 

  2. M. Goto, S. Kawakita, N. Kikumoto, and O. Iida: JOM, 1986, vol. 38(9), pp. 43-46.

    Article  Google Scholar 

  3. Y. Takeda, S. Nakazawa, and A. Yazawa: Can. Metall. Q., 1980, vol. 19(3), pp. 297–305.

    Article  Google Scholar 

  4. M. Campforts, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 643-55.

    Article  Google Scholar 

  5. M. Campforts, E. Jak, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 619-31.

    Article  Google Scholar 

  6. M. Campforts, E. Jak, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 632-42.

    Article  Google Scholar 

  7. M. Campforts, K. Verscheure, E. Boydens, T. Van Rompaey, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 408-17.

    Article  Google Scholar 

  8. M. Campforts, K. Verscheure, T. Van Rompaey, E. Boydens, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 841-51.

    Article  Google Scholar 

  9. P. Taskinen, M. Kaskiala, P. Hietanen, K. Miettinen, and A. Forsström: Trans. Inst. Min. Metall. C, 2011, vol. 120, pp. 147-55.

    Google Scholar 

  10. P. Taskinen, M. Kaskiala, K. Miettinen, and J. Jansson: International Conference on Molten Slags and Fluxes, Beijing, China, 2012.

  11. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 21-33.

    Article  Google Scholar 

  12. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 13-20.

    Article  Google Scholar 

  13. K. Verscheure, F. Verhaeghe, E. Boydens, M. Van Camp, B. Blanpain, and P. Wollants: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 929-40.

    Article  Google Scholar 

  14. P.C. Pistorius: JSAIMM, 2003, vol. 103(8), pp. 509-14.

    Google Scholar 

  15. P.C. Pistorius: JSAIMM, 2004, vol. 104(7), pp. 417-22.

    Google Scholar 

  16. J.H. Zietsman and C. Pistorius: Minerals Engineering, 2005, vol. 19(3), pp. 262-79.

    Article  Google Scholar 

  17. D.G.C. Robertson and S. Kang: Proceedings of the International Conference on Fluid Flow Phenomena in Minerals Processing, TMS, Warrendale, PA, 1999, pp. 157–68.

  18. K. Verscheure, A.K. Kyllo, A. Filzwieser, B. Blanpain, and P. Wollants: TMS, Warrendale, PA, 2006, pp. 139–54.

  19. H. Joubert: International Conference on Molten Slags and Fluxes, Stockholm, Helsinki, 2000.

  20. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak: Metall. Mater. Trans.B., 2013, vol. 44B, pp. 549–60.

  21. S. Nikolic, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 900-09.

    Article  Google Scholar 

  22. F.P. Incropera and D.P. DeWitt: Fundamentals of Heat and Mass Transfer 5th ed., Hoboken, NJ : John Wiley, 2002.

    Google Scholar 

  23. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 534-48.

    Article  Google Scholar 

  24. M. Campforts, K. Verscheure, F. Verhaeghe, T. Van Rompaey, E. Boydens, B. Blanpain, and P. Wollants: International Symposium on Advanced Processing of Metals and Materials, San Diego, CA, 2006, pp. 27–31.

  25. X.G. Liu: MPhil Thesis, The University of Queensland, 2013.

  26. S. Nikolic, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2009, vol. 40(6), pp. 892-99.

    Article  Google Scholar 

  27. A. Ilyushechkin, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 203-05.

    Article  Google Scholar 

  28. A. Yazawa and Y. Takeda: JIM, 1982, vol. 23(6), pp. 328-33.

    Google Scholar 

  29. B. Zhao, C. Nexhip, D.P. George-Kennedy, P.C. Hayes, and E. Jak: Proceedings of the International Conference on Copper, Hamburg, Germany, 2010, pp. 1297–312.

  30. B. Zhao, C. Nexhip, D.P. George-Kennedy, P.C. Hayes, and E. Jak: Proceedings of the International Conference on Copper, Hamburg, Germany, 2010, pp. 811–21.

Download references

Acknowledgments

The financial support of Outotec Oy is gratefully acknowledged. Kennecott Utah Copper kindly provided the industrial flash converting slag used in the experiments. The Australian Research Council Linkage program for the financial support and The University of Queensland for a Graduate School International Travel Award for Ata Fallah-Mehrjardi to enable this work to be undertaken in Aalto University are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Fallah-Mehrjardi.

Additional information

Manuscript submitted June 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallah-Mehrjardi, A., Jansson, J., Taskinen, P. et al. Investigation of the Freeze-Lining Formed in an Industrial Copper Converting Calcium Ferrite Slag. Metall Mater Trans B 45, 864–874 (2014). https://doi.org/10.1007/s11663-013-9987-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9987-5

Keywords

Navigation