Skip to main content
Log in

The Interface of TiB2 and Al3Ti in Molten Aluminum

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the grain refinement of aluminum, Al3Ti and TiB2 particles are introduced to reduce the casting grain size down to 200 micrometer level, which makes cold working possible. The particles are brought in by the addition of Al-Ti-B-type master alloys. It is generally believed that TiB2 particles are stable and nucleate α-Al grains in solidification in the presence of titanium in solution from the dissolution of Al3Ti particles in the master alloys. The titanium in solution either forms Al3Ti layers on the surface of TiB2 particles to promote the nucleation of α-Al grains or remains as solute to restrict the growth of α-Al grains in solidification. However, a consensus on a grain refinement mechanism is still to be reached due to the lack of direct observation of the three phases in castings. This paper presents finding of the TiB2/Al3Ti interfaces in an Al-Ti-B master alloy. It demonstrates a strong epitaxial growth of Al3Ti on the surface of TiB2 particles, a sign of the formation of an Al3Ti layer on the surface of TiB2 particles in grain refinement practice. The Al3Ti layer has a crystal coherency with α-Al and hence offers a substrate for heterogeneous nucleation of α-Al grains. However, the layer must be dynamic to avoid the formation of compounded Al3Ti and TiB2 particles leading to the loss of efficiency in grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. 1. L. Arnberg, L. Bäckerud, H. Klang: Met. Technol., 1982, vol. 9, pp. 7.

    Article  Google Scholar 

  2. 2. Y. Birol: J. Alloys Compd., 2006, vol. 420, pp. 71.

    Article  Google Scholar 

  3. A. Cibula: J Inst Metals, 1949-50, vol. 76, pp. 321.

  4. 4. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X. R. Zhou, G. E. Thompson, T. Pennycook, T. Hashimoto: Acta Metall. Mater., 2015, Vol. 84, pp. 292.

    Article  Google Scholar 

  5. 5. M. Guzowski, G. Sigworth, D. Sentner: Metall. Trans. A, 1987, vol. 18, pp. 603.

    Article  Google Scholar 

  6. 6. M. Lee, B. Terry: Mater. Sci. Technol., 1991, Vol. 7, pp. 608.

    Article  Google Scholar 

  7. 7. D. Mccartney: Int. Mater. Rev., 1989, vol. 34, pp. 247.

    Article  Google Scholar 

  8. 8. P. Schumacher, A. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, A.H. Green: Mater. Sci. Technol., 1998, vol. 14, pp. 394.

    Article  Google Scholar 

  9. 9. X. Wang, Q. Han: Mater. Sci. Technol., 2014, Vol. 31, pp.874.

    Article  Google Scholar 

  10. X. Wang, Z. Liu, W. Dai, Q. Han: Metall. Mater. Trans. B, 2015 Vol. 46, pp. 1620.

    Article  Google Scholar 

  11. 11. J. Fjellstedt, A.E. Jarfors, L. Svendsen: J. Alloys Compd., 1999, vol. 283, pp. 192.

    Article  Google Scholar 

  12. G. K. Sigworth: Metall Trans A, 1984, vol. 15, pp. 277.

    Article  Google Scholar 

  13. L. Arnberg, L. Bäckerud, H. Klang: Met. Technol., 1982, vol. 9, pp. 1.

    Article  Google Scholar 

  14. 14. G. P. Jones, J. Pearson: Metall. Trans. B, 1976, vol. 7, pp. 223.

    Article  Google Scholar 

  15. P. Mohanty, J. Gruzleski: Acta Metall. Mater., 1995, Vol. 43, pp.2001.

    Article  Google Scholar 

  16. B. Murty, S. Kori, M. Chakraborty: Inter. J. Mater. Rev., 2002, Vol. 47, pp. 3.

    Article  Google Scholar 

  17. A. L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow: Acta Mater., 2000, Vol. 48, pp. 2823.

    Article  Google Scholar 

  18. X. Wang, A. Jha, R. Brydson: Mater. Sci. Eng. A, 2004, Vol. 364, pp. 339.

    Article  Google Scholar 

  19. D. H. St. John, P. Chao, M. Qian, M. A. Easton: Adv. Eng. Mater., 2007, Vol. 9, pp. 739.

    Article  Google Scholar 

Download references

Acknowledgment

X. Wang gratefully acknowledges Purdue Polytechnic Institute for the financial support of this study through a startup fund of his tenure track position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wang.

Additional information

Manuscript submitted September 3, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Song, J., Vian, W. et al. The Interface of TiB2 and Al3Ti in Molten Aluminum. Metall Mater Trans B 47, 3285–3290 (2016). https://doi.org/10.1007/s11663-015-0570-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0570-0

Keywords

Navigation