Skip to main content

Advertisement

Log in

Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The bubble generation process in conditioned A356 alloy melt through submerged spiry orifices with a wide diameter range (from 0.07 to 1.0 mm) is investigated in order to prepare aluminum foams with fine pores. The gas flow rate and chamber pressure relationship for each orifice is first determined when blowing gas in atmospheric environment. The effects of chamber pressure (P c) and orifice diameter (D o) on bubble size are then analyzed separately when blowing gas in melt. A three-dimensional fitting curve is obtained illustrating both the influences of orifice diameter and chamber pressure on bubble size based on the experimental data. It is found that the bubble size has a V-shaped relationship with orifice diameter and chamber pressure neighboring the optimized parameter (D o = 0.25 mm, P c = 0.4 MPa). The bubble generation mechanism is proposed based on the Rayleigh–Plesset equation. It is found that the bubbles will not be generated until a threshold pressure difference is reached. The threshold pressure difference is dependent on the orifice diameter, which determines the time span of pre-formation stage and bubble growth stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

d b :

Bubble size (mm)

D * :

Cell size (mm)

D o :

Orifice diameter (mm)

f b :

Bubble formation frequency (Hz)

g :

Gravitational acceleration (m/s2)

H :

Orifice immersion depth (mm)

l 1 :

Chord length in the horizontal direction (mm)

l 2 :

Chord length in the longitudinal direction (mm)

P atm :

Atmospheric pressure (MPa)

P b :

Bubble pressure (MPa)

P c :

Chamber pressure (MPa)

P L :

Liquid pressure (MPa)

Q :

Gas flow rate at liquid temperature (L/min)

Q 0 :

Gas flow rate at room temperature (L/min)

Q E :

Equivalent gas flow rate in a bubble formation cycle (seconds)

R :

Instantaneous bubble radius (mm)

T a :

Time for pre-formation stage (seconds)

T b :

Bubble formation cycle (seconds)

δ :

Anisotropy ratio

θ :

Contact angle (deg)

μ :

Liquid dynamic viscosity (N s/m2)

ν :

Liquid kinematic viscosity (m2/s)

ρ :

Liquid density (kg/m3)

σ LG :

Liquid–gas surface tension (N/m)

References

  1. Z. Han and L. Holappa: Metall. Mater. Trans. B, 2003, vol. 34, pp.525-32.

    Article  Google Scholar 

  2. Z. Liu, L. Li, F. Qi, B. Li, M. Jiang and F. Tsukihashi: Metall. Mater. Trans. B, 2015, vol. 46, pp. 406-20.

    Article  Google Scholar 

  3. F. García-Moreno, B. Siegel, K. Heim, A. J. Meagher and J. Banhart: Colloid. Surf. A, 2015, vol. 473, pp. 60-7.

    Article  Google Scholar 

  4. Y. P. Jeon, C. G. Kang and S. M. Lee, J: Mater. Process. Tech., 2009, vol. 209, pp. 435-444.

    Article  Google Scholar 

  5. J. Banhart: Prog. Mater. Sci., 2001, vol. 46, pp. 559-632.

    Article  Google Scholar 

  6. L. P. Lefebvre, J. Banhart and D. C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775-87.

    Article  Google Scholar 

  7. J. Banhart: Adv. Eng. Mater., 2013, vol. 15, pp. 82-111.

    Article  Google Scholar 

  8. F. Dobesberger, H. Flankl, D. Leitlmeier, A. Birgmann, and P. Schulz: US patent, 2007, 7,195,662 B2.

  9. V. V. Slezov: J. Colloid. Interf. Sci., 2002, vol. 255, pp. 274-292.

    Article  Google Scholar 

  10. H. Bo-Young, P. Soo-Han and A. Hiroshi: Mater. Sci. Forum., 2003, vol. 439, pp. 51-6.

    Article  Google Scholar 

  11. D. Gerlach, G. Biswas, F. Durst and V. Kolobaric: Int. J. Heat. Mass. Tran., 2005, vol. 48, pp. 425-38.

    Article  Google Scholar 

  12. M. Jamialahmadi, M. R. Zehtaban, H. Muller-Steinhagen, A. Sarrafi and J. M. Smith: Chem. Eng. Res. Des., 2001, vol. 79, pp. 523-32.

    Article  Google Scholar 

  13. J. Yuan and Y. Li: Sci. Chi. Tech. Sci., 2015, vol. 58, pp. 64-74.

    Article  Google Scholar 

  14. J. Xie, X. Zhu, Q. Liao, H. Wang and Y. Ding: Int. J. Heat. Mass. Tran., 2012, vol. 55, pp. 3205-13.

    Article  Google Scholar 

  15. R. Kumar and N. R. Kuloor: Adv. Chem. Eng., 1970, vol. 8, pp. 255-368.

    Article  Google Scholar 

  16. J. F. Davidson and B. Schüler: Chem. Eng. Res. Des., 1997, vol. 75, pp. S105-15.

    Article  Google Scholar 

  17. E. S. Gaddis and A. Vogelpohl: Chem. Eng. Sci., 1986, vol. 41, pp. 97-105.

    Article  Google Scholar 

  18. M. Sano and K. Mori: Trans. JIM, 1976, vol. 17, pp. 344-52.

    Google Scholar 

  19. J. Yuan, Y. Li and Y. Zhou: J. Mater. Sci., 2014, vol. 49, pp. 8084-94.

    Article  Google Scholar 

  20. S. Ramakrishnan, R. Kumar and N. R. Kuloor: Chem. Eng. Sci., 1969, vol. 24, pp. 731-47.

    Article  Google Scholar 

  21. A. Marmur and E. Rubin: Chem. Eng. Sci., 1976, vol. 31, pp. 453-63.

    Article  Google Scholar 

  22. W. B. Hayes III, B. W. Hardy and C. D. Holland: A.I.Ch.E. J., 1959, vol. 5, pp. 319-24.

  23. H. N. Oguz and A. Prosperetti: J. Fluid. Mech., 1993, vol. 257, pp. 111-45.

    Article  Google Scholar 

  24. S. Gnyloskurenko, A. Byakova, T. Nakamura, and O. Raychenko: J. Mater. Sci., vol. 40, pp. 2437–41.

  25. S. V. Gnyloskurenko and T. Nakamura: Mater. Trans., 2003, vol. 44, pp. 2298-302.

    Article  Google Scholar 

  26. X. Fan, X. Chen, X. Liu, H. Zhang and Y. Li, Metall. Mater. Trans. A, 2013, vol. 44, pp. 729-37.

    Article  Google Scholar 

  27. M. Martín, F. J. Montes and M. A. Galan: Chem. Eng. Sci., 2006, vol. 61, pp. 363-9.

    Article  Google Scholar 

  28. A. A. Kulkarni and J. B. Joshi: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 5873-931.

    Article  Google Scholar 

  29. T. Fourest, J. Laurens, E. Deletombe, J. Dupas, and M. Arrigoni: Int. J. Impact. Eng., 2014, vol. 73, pp. 66–74.

  30. T. G. Leighton, K. J. Fagan and J. E. Field: Euro. J. Phys., 1991, vol. 12, pp. 77-85.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the International Cooperation Project of Ministry of Science and Technology of China (Grant No. 2013DFR50330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Li.

Additional information

Manuscript submitted October 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Li, Y., Wang, N. et al. Effect of Orifice Diameter on Bubble Generation Process in Melt Gas Injection to Prepare Aluminum Foams. Metall Mater Trans B 47, 1649–1660 (2016). https://doi.org/10.1007/s11663-016-0638-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0638-5

Keywords

Navigation