Skip to main content
Log in

Multistep Reduction Kinetics of Fine Iron Ore with Carbon Monoxide in a Micro Fluidized Bed Reaction Analyzer

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The reduction kinetics of Brazilian hematite by CO is investigated in a Micro Fluidized Bed Reaction Analyzer (MFBRA) using an analyzing method based on Johnson-Mehl-Avrami (JMA) model at temperatures of 973 K (700 °C), 1023 K (750 °C), 1073 K (800 °C), and 1123 K (850 °C). The solid products at different reduction stages are evaluated by SEM/EDS and XRD technologies. Results indicate that the reduction process is better to be discussed in terms of a parallel reaction model that consists of the reactions of hematite to wüstite and wüstite to iron, rather than a stepwise route. Meanwhile, the controlling mechanism of the reduction process is found to vary with temperature and the degree of conversion. The overall process is controlled by the gas–solid reaction occurring at the iron/wüstite interface in the initial stages, and then is limited by the nucleation of wüstite, and finally shifts to diffusion control. Moreover, the reactions of hematite to wüstite and wüstite to iron take place simultaneously but with different time dependences, and the apparent activation energies of hematite to wüstite and wüstite to iron are determined as 83.61 and 80.40 KJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5
Fig.6
Fig.7
Fig.8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1. J. L. Schenk: Particuology, 2011, vol. 9, pp. 14-23.

    Article  Google Scholar 

  2. 2. J. K. Wright, I. F. Taylor, and D. K. Philp: Miner. Eng., 1991, vol. 4, pp. 983-1001.

    Article  Google Scholar 

  3. 3. A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar, and P. K. Chatterjee: Renew. Sust. Energ. Rev., 2016, vol. 59, pp. 597-619.

    Article  Google Scholar 

  4. 4. M. Tang, L. Xu, and M. Fan: Appl. Energ., 2015, vol. 151, pp. 143-56.

    Article  Google Scholar 

  5. 5. A. Lyngfelt: Appl. Energ., 2014, vol. 113, pp. 1869-73.

    Article  Google Scholar 

  6. 6. A. Evdou, V. Zaspalis, and L. Nalbandian: Fuel, 2016, vol. 165, pp. 367-78.

    Article  Google Scholar 

  7. 7. R. W. Breault, E. R. Monazam, and J. T. Carpenter: Appl. Energ., 2015, vol. 157, pp. 174-82.

    Article  Google Scholar 

  8. 8. F. Mayer, A. R. Bidwe, A. Schopf, K. Taheri, M. Zieba, and G. Scheffknecht: Appl. Energ., 2014, vol. 113, pp. 1863-68.

    Article  Google Scholar 

  9. 9. G.L. Schwebel, D. Filippou, G. Hudon, M. Tworkowski, A. Gipperich, and W. Krumm: Appl. Energ., 2014, vol. 113, pp. 1902-08.

    Article  Google Scholar 

  10. 10. A. Pineau, N. Kanari, and I. Gaballah: Thermochim. Acta, 2007, vol. 456, pp. 75-88.

    Article  Google Scholar 

  11. 11. A. Pineau, N. Kanari, and I. Gaballah: Thermochim. Acta, 2006, vol. 447, pp. 89-100.

    Article  Google Scholar 

  12. 12. J. Bessières, A. Bessières, and J. J. Heizmann: Int. J. Hydrogen Energ., 1979, vol. 5, pp. 585-95.

    Article  Google Scholar 

  13. 13. Y. S. Sun, Y. X. Han, P. Gao, and G. F. Li: Ironmak. and Steelmak., 2014, vol. 41, pp. 763-68.

    Article  Google Scholar 

  14. 14. B. Weiss, J. Sturn, S. Voglsam, F. Winter, and J. Schenk: Chem. Eng. Sci., 2011, vol. 66, pp. 703-08.

    Article  Google Scholar 

  15. 15. E. T. Turkdogan, and J. V. Vinters: Metall. Mater. Trans. B, 1971, vol. 2, pp. 3175-88.

    Article  Google Scholar 

  16. 16. R.Corbari, and R. J. Fruehan: Metall. Mater. Trans. B, 2010, vol. 41, pp. 318-29.

    Article  Google Scholar 

  17. 17. L. Guo, J. Gao, Y. Zhong, and Z. Guo: ISIJ Int., 2015, vol. 55, pp. 1797-1805.

    Article  Google Scholar 

  18. 18. A. V. Bradshaw, and A. G. Matyas: Metall. Mater. Trans. B, 1976, vol. 7, pp. 81-87.

    Article  Google Scholar 

  19. 19. J. Yu, C. Yao, X. Zeng, S. Geng, L. Dong, Y. Wang, S. Gao, and G. Xu: Chem. Eng. J., 2011, vol. 168, pp. 839-47.

    Article  Google Scholar 

  20. 20. J. Yu, J. Zhu, F. Guo, Z. Duan, Y. Liu, and G. Xu: J. Fuel Chem. Technol., 2010, vol. 38, pp. 666-72.

    Article  Google Scholar 

  21. 21. F. Wang, X. Zeng, R. Shao, Y. Wang, J. Yu, and G. Xu: Energ. Fuel., 2015, vol. 29, pp. 4795-4802.

    Article  Google Scholar 

  22. 22. X. Zeng, F. Wang, Y. Wang, A. Li, J. Yu, and G. Xu: Energ. Fuel., 2014, vol. 28, pp. 1838-45.

    Article  Google Scholar 

  23. 23. F. Wang, X. Zeng, Y. Wang, J. Yu, and G. Xu: Fuel Process. Technol., 2016, vol. 141, pp. 2-8.

    Article  Google Scholar 

  24. 24. Y. Zhang, M. Yao, G. Sun, S. Gao, and G. Xu: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 6316-24.

    Article  Google Scholar 

  25. 25. Y. Zhang, M. Yao, S. Gao, G. Sun, and G. Xu: Appl. Energ., 2015, vol. 160, pp. 820-28.

    Article  Google Scholar 

  26. 26. D. Pigini, A. M. Cialdella, P. Faranda, and G. Tranfo: Rapid Commun. Mass Sp., 2006, vol. 20, pp. 1013-18.

    Article  Google Scholar 

  27. 27. C. W. Jr. Sandmann, and K. Zygourakis: Chem. Eng. Commun., 1987, vol. 58, pp. 139-64.

    Article  Google Scholar 

  28. 28. P. Pourghahramani, and E. Forssberg: Thermochim. Acta, 2007, vol. 454, pp. 69-77.

    Article  Google Scholar 

  29. 29. J. Yu, J. Yue, Z. Liu, L. Dong, G. Xu, J. Zhu, Z. Duan, and L. Sun: AIChE J. 2010, vol. 56, pp. 2905-12.

    Article  Google Scholar 

  30. 30. H. Chen, Z. Zheng, and W. Shi: Procedia Eng., 2015, vol. 102, pp. 1726-35.

    Article  Google Scholar 

  31. 31. S. Geng, J. Yu, J. Zhang, H. Guo, J. Yue, and G. Xu: CIESC J., 2013, vol. 64, pp. 867-76.

    Google Scholar 

  32. A. Go´mez-Barea, B. Leckner, P. Ollero, C. Ferna´ndez-Baco, and L. Salvador: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 7344-50.

    Article  Google Scholar 

  33. 33. C. Wen, and Y. Yu: Chem. Eng. Prog. Sym. Ser., 1966, vol. 62, pp. 100-11.

    Google Scholar 

  34. 34. E. N. Fuller, P. D. Schettler, and J. C. Giddings: Ind. Eng. Chem., 1966, vol. 58, pp. 18-27.

    Article  Google Scholar 

  35. 35. Y. Man, and J. Feng: Powder Technol., 2016, vol. 301, pp. 674-78.

    Article  Google Scholar 

  36. 36. E. R. Monazam, R. W. Breault, and R. Siriwardane: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 13320-28.

    Google Scholar 

  37. 37. B. Janković: Chem. Eng. J., 2008, vol. 139, pp. 128-35.

    Article  Google Scholar 

  38. 38. V. Sergey, and S. Nicolas: Macromol. Rapid Comm., 2006, vol. 27, pp. 1515-32.

    Article  Google Scholar 

  39. 39. B. Janković, B. Adnađević, and J. Jovanović: Thermochim. Acta, 2007, vol. 452, pp. 106-15.

    Article  Google Scholar 

  40. 40. P. K. Strangway, H.D. Lien, and H.U. Ross: Can. Metall. Quart., 2016, vol. 8, pp.235-44.

    Article  Google Scholar 

  41. 41. W.A. Johnson, and R.F. Mehl: Trans. Metall. Soc. AIME, 1939, vol. 135, pp. 416-58.

    Google Scholar 

  42. 42. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.

    Article  Google Scholar 

  43. 43. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-24.

    Article  Google Scholar 

  44. 44. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177-84.

    Article  Google Scholar 

  45. 45. C. N. Velisaris, and J. C. Seferis: Polym. Eng. Sci., 1986, vol. 26, pp. 1574-81.

    Article  Google Scholar 

  46. 46. E. R. Monazam, R. W. Breault, R. Siriwardane, G. Richards, and S. Carpenter: Chem. Eng. J., 2013, vol. 232, pp. 478-87.

    Article  Google Scholar 

  47. 47. E. R. Monazam, R. W. Breault, R. Siriwardane, and D. D. Miller: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 14808-16.

    Article  Google Scholar 

  48. 48. E. R. Monazam, R. W. Breault, and R. Siriwardance: Chem. Eng. J., 2014, vol. 242, pp. 204-10.

    Article  Google Scholar 

  49. 49. E. R. Monazam, R. W. Breault, and R. Siriwardane: Energ. Fuel., 2014, vol. 28, pp. 5406-14.

    Article  Google Scholar 

  50. 50. A. Kumar, and G. G. Roy: Metall. Mater. Trans. B, 2005, vol. 36, pp. 901-04.

    Article  Google Scholar 

  51. N. Dİlmaç, S. Yörük, and Ş. M. Gülaboğlu: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2278-87.

    Article  Google Scholar 

  52. 52. L. E. Lagoeiro: J. Metamorph. Geol., 1998, vol. 16, pp. 415-23.

    Article  Google Scholar 

  53. 53. P. F. Barbosa, L. Lagoeiro, R. Scholz, L. M. Graça, and N. Mohallem: Miner. Petrol., 2014, vol. 109, pp. 329-37.

    Article  Google Scholar 

  54. 54. N. Bost, M.R. Ammar, M.L. Bouchetou, and J. Poirier: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 2133-42.

    Article  Google Scholar 

  55. 55. J.S.J. V. Deventer, and P.R. Visser: Thermochim. Acta, 1987, vol. 111, pp. 89-102.

    Article  Google Scholar 

  56. 56. Y. He, and P. Chris Pistorius: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1538-41.

    Article  Google Scholar 

  57. 57. H. Zhong, L. Wen, C. Zou, S. Zhang, and C. Bai: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2288-95.

    Article  Google Scholar 

  58. 58. K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg: Chem. Eng. J., 2007, vol. 131, pp. 73-82.

    Article  Google Scholar 

  59. 59. J. R. Rostrup-Nielsen: J. Catal., 1972, vol. 27, pp. 343-56.

    Article  Google Scholar 

  60. 60. J. B. Claridge, M. L. H. Green, S. C. Tsang, A. P. E. York, A. T. Ashcroft, and P. D. Battle: Catal. Lett., 1993, vol. 22, pp. 299-305.

    Article  Google Scholar 

  61. 61. R. H. McCuen: J. Hydrol., 1973, vol. 18, pp. 37-53.

    Article  Google Scholar 

  62. 62. P. L. Walker, F. Rusinko, and L. G. Austin: Adv. Catal., 1975, vol. 13, pp. 133-221.

    Google Scholar 

  63. 63. I. Sohn, and S. M. Jung: Steel Res. Int., 2011, vol. 82, pp. 1345-54.

    Article  Google Scholar 

  64. 64. I. Sohn, and R. J. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36, pp. 605-12.

    Article  Google Scholar 

  65. 65. M. V. C. Sastri, R. P. Viswanath, and B. Viswanathan: Int. J. Hydrogen Energ., 1982, vol. 7, pp. 951-55.

    Article  Google Scholar 

  66. 66. S. P. Trushenski, K. Li, and W. O. Philbrook: Metall. Mater. Trans. B, 1974, vol. 5, pp. 1149-58.

    Article  Google Scholar 

  67. 67. R. D. Doherty, K. M. Hutchings, J. D. Smith, and S. Yörük: Metall. Mater. Trans. B, 1985, vol. 16, pp. 425-32.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 51274264 and No. 51074201), the National Key Scientific Instrument and Equipment Development Projects of China (No. 2011YQ120039), and the Fundamental Science and Advanced Technology Research (Key) Projects of Chongqing Science & Technology Commission (No. cstc2015jcyjB0540). The Institute of Process Engineering (IPE), Chinese Academy of Sciences (CAS) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Zheng or Zhiwei Chen.

Additional information

Manuscript submitted February 29, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zheng, Z., Chen, Z. et al. Multistep Reduction Kinetics of Fine Iron Ore with Carbon Monoxide in a Micro Fluidized Bed Reaction Analyzer. Metall Mater Trans B 48, 841–852 (2017). https://doi.org/10.1007/s11663-016-0883-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0883-7

Keywords

Navigation