Skip to main content
Log in

Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg)xTiyO5 (x + y = 3, pseudobrookite) and rutile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.M. Glen and A.F. Schoukens. Production of High Titania Slag From Ilmenite. CA, 1993.

  2. X.J. Dong, H.Y. Sun, X.F. She, Q.G. Xue and J.S. Wang, Ironmaking & steelmaking 2014, vol. 41, pp. 99-106.

    Article  Google Scholar 

  3. C Feng, MS Chu, J Tang, J Qin, F Li, ZG Liu (2016) Int. J. Miner. Metall. Mater. 23:868-880.

    Article  Google Scholar 

  4. J L Liao, J Li, X D Wang and Z T Zhang, Ironmaking & steelmaking 2012, vol. 39, pp. 133-139.

    Article  Google Scholar 

  5. M. Nakamoto, Y. Tsugawa, A. Kiyose, J. Lee and T. Tanaka, Journal of High Temperature Society 2007, vol. 32, pp. 74-77.

    Article  Google Scholar 

  6. H. Park, J.Y. Park, G.H. Kim and Il. Sohn, steel research international 2012, vol. 83, pp. 150–156.

    Article  Google Scholar 

  7. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv and C.G. Bai, ISIJ international 2015, vol. 55, pp. 1367-1376.

    Article  Google Scholar 

  8. K. Zhang, X.W. Lv, R. Huang, B. Song and F. Xi, Metallurgical & Materials Transactions B 2014, vol. 45, pp. 923-928.

    Article  Google Scholar 

  9. G.Z. Deng and X.F. Wang, Iron Steel Vanadium Titanium 2002, vol. 23, pp. 14-17.

    Google Scholar 

  10. V.A. Reznichenko, M.B. Rapoport and V.A. Tkachenko: The metallurgy of titanium : investigation of electric melting of titanium slags, English Translation, U.S. Dept. Commerce, 1963.

    Google Scholar 

  11. M.G. Frohberg and R. Weber, Arch Eisenhueeenw 1965, vol. 36, pp. 477-480.

    Google Scholar 

  12. A.V. Bemst; C. Delaunois, Verres Refractaires 1966, vol. 20, p. 435.

    Google Scholar 

  13. J.K. Tuset. Tidsskrift for Kjemi Berfvesenog Metallurgi 1968, vol. 28, p. 232-240.

    Google Scholar 

  14. G Handfield and G.G. Charette, Canadian Metallurgical Quarterly 1971, vol. 10, pp. 235-243.

    Article  Google Scholar 

  15. Z.J. Zhao, E.Q. Ma and Y.J. Lian, Iron Steel Vanadium Titanium 2002, vol. 23, pp. 36-38.

    Google Scholar 

  16. G.G. Qiang, Y.Y. Cheng, and Y.D. Xian, Iron Steel Vanadium Titanium 1987, vol. 1, p. 55–59+70.

  17. A.M. Amer, Hydrometallurgy 2002, vol. 67, pp. 125-133.

    Article  Google Scholar 

  18. I. Toromanoff and F. Habashi, Journal of the Less common metals 1984, vol. 97, pp. 317-329.

    Article  Google Scholar 

  19. G. Tranell, O. Ostrovski and S. Jahanshahi, Metallurgical and Materials Transactions B 2002, vol. 33, pp. 61-67.

    Article  Google Scholar 

  20. J. M. A. Geldenhuis and P. C. Pistorius, J S Afr I Min Metall 1999, vol. 99, pp. 41-47.

    Google Scholar 

  21. J. Pesl and R.H. Eriç, Metallurgical & Materials Transactions B 1999, vol. 30, pp. 695-705.

    Article  Google Scholar 

  22. G. Eriksson, A D. Pelton, E. Woermann and A. Ender, Cheminform 1997, vol. 100, pp. 1839-1849.

    Google Scholar 

  23. I. D. Sommerville and H. B. Bell, Canadian Metallurgical Quarterly 1982, vol. 21, pp. 145-155.

    Article  Google Scholar 

  24. A. Shankar, M. Görnerup, A. K. Lahiri and S. Seetharaman, Metallurgical & Materials Transactions B 2007, vol. 38, pp. 911-915.

    Article  Google Scholar 

  25. II Sohn, W.L. Wang, H. Matsuura, F. Tsukihashi and D J. Min, ISIJ International 2012, vol. 52, p. 2012.

    Article  Google Scholar 

  26. S. Seftharaman, D. Sichen, S. SridharK, C. Mills, Metallurgical and Materials Transactions B 2000, vol. 31, pp. 111-119.

    Article  Google Scholar 

  27. P. C. Pistorius and C. Coetzee, Metallurgical & Materials Transactions B 2003, vol. 34, pp. 581-588.

    Article  Google Scholar 

  28. K. Shimoda and K. Saito, ISIJ International 2007, vol. 47, pp. 1275-1279.

    Article  Google Scholar 

  29. K. Zheng, Z.T. Zhang, F.H. Yang, and S. Sridhar: in Ninth International Conference on Molten Slags,Fluxes and Salts, 2012, pp 342–49.

  30. D. Liang, Z.M. Yan, X.W. Lv, J. Zhang and C.G. Bai, Metallurgical & Materials Transactions B 2017, vol. 48, pp. 1-9.

    Google Scholar 

  31. H. M. Hulburt, Mechanics of Materials 1984, vol. 3, pp. 169-169.

    Article  Google Scholar 

  32. S.F. Zhang, X. Zhang, H.J. Peng, L.Y. Wen, G.B. Qiu, M.L. Hu and C.G. Bai, Transactions of the Iron & Steel Institute of Japan 2014, vol. 54, pp. 734-742.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to the Natural Science Foundation of China (No: 51374262). The chemical compositions analysis of all the samples was performed by Panzhihua Iron and Steel Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Additional information

Manuscript submitted September 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Lv, X., Li, S. et al. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process. Metall Mater Trans B 49, 1963–1973 (2018). https://doi.org/10.1007/s11663-018-1284-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1284-x

Keywords

Navigation