Skip to main content
Log in

Effect of Nozzle Port Angle on Transient Flow and Surface Slag Behavior During Continuous Steel-Slab Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Undesirable flow variations can cause severe instabilities at the interface between liquid mold flux and molten steel across the mold top-region during continuous steel casting, resulting in surface defects in the final products. A three-dimensional Large Eddy Simulation (LES) model using the volume of fluid method for the slag and molten steel phases is validated with plant measurements, and applied to gain new insights into the effects of nozzle port angle on transient flow, top slag/steel interface movement, and slag behavior during continuous slab casting under nominally steady conditions. Upward-angled ports produce a single-roll flow pattern with lower surface velocity, due to rapid momentum dissipation of the spreading jet. However, strong jet wobbling from the port leads to greater interface variations. Severe level drops allow easy entrapment of liquid flux by the solidifying steel shell at the meniscus. Sudden level rises may also be detrimental, leading to overflow of the solidified meniscus region. Downward-angled ports produce a classic double-roll pattern with less jet turbulence and a more stable interface everywhere except near the narrow faces. Finally, the flow patterns, surface velocity, and level predicted from the validated LES model are compared with steady-state standard k-ε model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. L.C. Hibbeler and B. G. Thomas: Iron Steel Technol., 2013, vol. 10(10), pp. 121-136.

    Google Scholar 

  2. T. Teshima, M. Osame, K. Okimoto and Y. Nimura: Proc. of 71th Steelmaking Conf., The Iron and Steel Society, London, UK, 1988, pp. 111–118.

  3. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685-691.

    Article  Google Scholar 

  4. R. Hagemann, R. Schwarze, H. P. Heller, and P. R. Scheller: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 80-90.

    Article  Google Scholar 

  5. H. Shin, S. Kim, B. G. Thomas, G. Lee, J. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-1644.

    Article  Google Scholar 

  6. J. Sengupta, B. G. Thomas, H. Shin, G. Lee, and S. Kim: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1597-1611.

    Article  Google Scholar 

  7. Z. Liu, B. Li, and M. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675-697.

    Article  Google Scholar 

  8. Z. Liu, F. Qi, B. Li, and M. Jiang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 1081-1089.

    Article  Google Scholar 

  9. Z. Liu, Z. Sun, and B. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1248-1267.

    Article  Google Scholar 

  10. S-M. Cho, S-H. Kim, R. Chaudhary, B. G. Thomas, H-J. Shin, W-Y. Choi, S-K. Kim: Iron Steel Technol., 2012, vol.9, pp. 85-95.

    Google Scholar 

  11. R. Chaudhary, G-G. Lee, B. G. Thomas, S-M. Cho, S-H. Kim, and O-D. Kwon: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 300-315.

    Article  Google Scholar 

  12. C. Ojeda, B. G. Thomas, J. Barco, and J. L. Arana: Proc. of AISTech 2007, Assoc. Iron Steel Technology, Warrendale, PA, USA, 2007, vol. 1, pp. 269–84.

  13. J. Sengupta, C. Ojeda, and B. G. Thomas: Int. J. Cast Met. Res., 2009, vol. 22, pp. 8-14.

    Article  Google Scholar 

  14. S-M. Cho, B. G. Thomas, and S-H. Kim: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3080-3098.

    Article  Google Scholar 

  15. S. Kunstreich, P. H. Dauby, S.-K. Baek, and S.-M. Lee: Proc. of 5th European Continuous Casting Conf., Nice, France, 2005, pp. 37–44.

  16. P. H. Dauby: Rev. Metall., 2012, vol. 109, pp. 113-136.

    Article  Google Scholar 

  17. K. Jin, S. P. Vanka, and B. G. Thomas: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 162-178.

    Article  Google Scholar 

  18. H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269-284.

    Article  Google Scholar 

  19. Z. Liu, B. Li, M. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484-492.

    Article  Google Scholar 

  20. Z. Liu, F. Qi, B. Li, and S. C. P. Cheng: Int. J. Multiphase. Flow, 2016, vol. 79, pp. 190-201.

    Article  Google Scholar 

  21. K. Cukierski and B. G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94-107.

    Article  Google Scholar 

  22. Y. Wang, A. Dong, and L. Zhang: Steel Res. Int., 2011, vol. 82, pp. 428-439.

    Article  Google Scholar 

  23. R. Singh, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1098-1115.

    Article  Google Scholar 

  24. B. G. Thomas, L. J. Mika, and F. M. Najjar: Metall. Mater. Trans B, 1990, vol. 21B, pp. 387-400.

    Article  Google Scholar 

  25. F. M. Najjar, B. G. Thomas, and D. E. Hershey: Metall. Mater. Trans B, 1995, vol. 26B, pp. 749-765.

    Article  Google Scholar 

  26. S-M. Cho, B. G. Thomas, H-J. Lee, and S-H. Kim: Iron Steel Technol., 2017, vol. 14, pp. 76-84.

    Google Scholar 

  27. I. Calderon-Ramos, R. D. Morales, and M. Salazar-Campoy: Steel Res. Int., 2015, vol. 86, pp. 1610-1621.

    Article  Google Scholar 

  28. M. M. Salazar-Campoy, R. D. Morales, A. Nájera-Bastida, I. Calderón-Ramos, V. Cedillo-Hernández, and J. C. Delgado-Pureco: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 812-830.

    Article  Google Scholar 

  29. R. Chaudhary, G-G. Lee, B. G. Thomas, and S-H. Kim: Metall. Mater. Trans B, 2008, vol. 39B, pp. 870-884.

    Article  Google Scholar 

  30. C. A. Real-Ramirez, R. Miranda-Tello, L. Hoyos-Reyes, M. Reyes, and J. I. Gonzalez-Trejo: Indian J. Eng. Mater. Sci., 2012, vol. 19, pp. 179-188.

    Google Scholar 

  31. Q. Yuan: Ph. D. Thesis, University of Illinois at Urbana-Champaign, 2004.

  32. Q. Yuan, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685-702.

    Article  Google Scholar 

  33. R. Liu: Ph. D. Thesis, University of Illinois at Urbana-Champaign, 2015.

  34. ANSYS FLUENT 14.5-Theory Guide, ANSYS. Inc., Canonsburg, PA, USA, 2012.

  35. F Nicoud, F Ducros (1999) Flow Turb. Comb. 63:183-200.

    Article  Google Scholar 

  36. A. W. Cramb and I. Jimbo: Iron Steelmaking., 1989, vol. 16, pp. 43-55.

    Google Scholar 

  37. J. Lee and K. Morita: ISIJ Int., 2002, vol. 42, pp. 588-594.

    Article  Google Scholar 

  38. B. J. Keene: Int. Mater. Rev., 1993, vol. 38, pp. 157-192.

    Article  Google Scholar 

  39. A Kasama, A McLean, WA Miller, Z Morita, MJ Ward (1983) Can. Metall. Q. 22:9-17.

    Article  Google Scholar 

  40. KC Mill, YC Su (2006) Int. Mater. Rev. 51:329-351.

    Article  Google Scholar 

  41. H. Shin: Ph.D. Thesis, POSTECH, 2006.

  42. B. Zhao, S. P. Vanka, and B. G. Thomas: Int. J. Heat Fluid Flow, 2005, vol. 26, pp. 105-118.

    Article  Google Scholar 

  43. R. M. McDavid and B. G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 672-685.

    Article  Google Scholar 

  44. B. Xie, J. Wu, and Y. Gan: Proc. of Steelmaking Conference, ISS-AIME, Warrendale, PA, USA, 1991, pp. 647–651.

  45. R. Liu, J. Sengupta, D. Crosbie, S. Chung, M. Trinh, and B. G. Thomas: Proc. of TMS 2011, TMS, Warrendale, PA, USA, 2011, pp. 51–58.

  46. H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253-267.

    Article  Google Scholar 

  47. Q. Yuan, S. Sivaramakrishnan, S. P. Vanka, and B. G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–982.

    Article  Google Scholar 

  48. J. M. Harman and A. W. Cramb: Proc. 79th Steelmaking Conf., The Iron and Steel Society, Warrendale, PA, USA, 1996, pp. 773–84.

  49. H. L. F. Von Helmholtz: Monatsb. K. Preuss. Akad. Wiss. Berlin, 1868, vol. 23, pp. 215-228.

    Google Scholar 

  50. W. Thomson. (Lord Kelvin): Phil. Mag., 1871, vol. 42, No. 281, pp. 362-377.

    Article  Google Scholar 

  51. T. Funada and D. D. Joseph: J. Fluid, 2001, vol. 445, pp. 263-283.

    Google Scholar 

  52. G-G. Lee, B. G. Thomas, S-H. Kim, H-J. Shin, S-K. Baek, C-H. Choi, D-S. Kim, and S-J. Yu: Acta Mater., 2007, vol. 55, pp. 6705-6712.

    Article  Google Scholar 

  53. L. Zhang and Brian G. Thomas: Proc. Of XXIV National Steelmaking Symposium, Morelia, Mich, Mexico, 2003, pp. 138–183.

  54. H-J Shin, B . G. Thomas, G-G. Lee, J-M. Park, C-H. Lee, and S-H. Kim: Proc. Materials Science and Technology (MS&T), Assoc. Iron Steel Technology, Warrendale, PA, USA, 2004, vol. II, pp. 11–26.

  55. ASM. Jonayat and B. G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842–64.

  56. B. E. Launder and D. B. Spalding: Lectures in Mathematical Models of Turbulence. Academic Press, London, England. 1972.

    Google Scholar 

  57. S-M. Cho, S-H. Kim, and B. G. Thomas: ISIJ Int., 2014, vol. 54, pp. 845-854.

    Article  Google Scholar 

  58. R. Chaudhary, C. Ji, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 987-1007.

    Article  Google Scholar 

  59. S-M. Cho, S-H. Kim, and B. G. Thomas: ISIJ Int., 2014, vol. 54, pp. 855-864.

    Article  Google Scholar 

  60. R. Chaudhary, B. T. Rietow, and B. G. Thomas: Proc. Materials Science and Technology (MS&T), AIST/TMS, Pittsburgh, PA, 2009, pp. 1090–1101.

  61. X. Jin, D. Chen, X. Xie, J. Shen, and M. Long: Steel Res. Int., 2013, vol. 84, pp. 31-39.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank POSCO for their assistance in collecting plant data and financial support (Grant No. 4.0011721.01), and Dr. Hyun-Jin Cho and Dr. Ji-Joon Kim, POSCO for help with the plant measurements. Support from the Continuous Casting Center at Colorado School of Mines, the Continuous Casting Consortium at University of Illinois at Urbana-Champaign, and the National Science Foundation GOALI grant (Grant No. CMMI 18-08731) are gratefully acknowledged. Provision of FLUENT licenses through the ANSYS Inc. academic partnership program is also much appreciated. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Manuscript submitted July 27, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11663_2018_1439_MOESM1_ESM.avi

Supplementary material 1 Jet flow wobbling in mold center-middle plane with + 15 deg (up) ports. Supplementary material 1 (AVI 70531 kb)

11663_2018_1439_MOESM2_ESM.avi

Supplementary material 2 Jet flow wobbling in mold center-middle plane with − 30 deg (down) ports. Supplementary material 2 (AVI 71226 kb)

11663_2018_1439_MOESM3_ESM.avi

Supplementary material 3 Transient jet flow pattern and liquid-slag layer motion in the mold for + 15 deg (up) ports. Supplementary material 3 (AVI 94486 kb)

11663_2018_1439_MOESM4_ESM.avi

Supplementary material 4 Transient jet flow pattern and liquid-slag layer motion in the mold for − 30 deg (down) ports. Supplementary material 4 (AVI 86661 kb)

11663_2018_1439_MOESM5_ESM.avi

Supplementary material 5 Transient slag/steel interface profile on IR in the mold for + 15 deg (up) ports. Supplementary material 5 (AVI 43553 kb)

11663_2018_1439_MOESM6_ESM.avi

Supplementary material 6 Transient slag/steel interface profile on IR in the mold for − 30 deg (down) ports. Supplementary material 6 (AVI 46630 kb)

Appendix: Spread Angles of Jet Flow

Appendix: Spread Angles of Jet Flow

Vertical and horizontal spread angles of the jet flow at the nozzle port outlet are calculated to quantify the flow characteristics leaving the nozzle. The calculation is based on a weighted average of outward flow rate, ignoring the backflow zone where flow enters the port. Figure A1 illustrates the definition of both spread angles.

Fig. A1
figure 32

Definition of (a) vertical spread angle and (b) horizontal spread angle of jet flow: example of downward-angled nozzle ports

Vertical spread angle, θxy,sp is calculated as follows:

$$ \theta_{\text{xy,sp}} = \left| {\theta_{\text{xy}} - \theta_{\text{xy,upper}} } \right| + \left| {\theta_{\text{xy}} - \theta_{\text{xy,lower}} } \right|, $$
(A1)

where θxy is the vertical jet angle at the nozzle port outlet surface,[25,46] θxy,upper and θxy,lower are vertical jet angles calculated from the velocity vectors leaving each region, split into upper and lower regions according to the regions of the port exit surface found above and below the center plane of the jet flow, respectively. Due to the back flow zone located in the upper part at the nozzle port outlet, the two regions are separated, based on a mass flow-rate balance of the jet as follows:

$$ \sum\limits_{i = 1}^{N - n} {\left( {\Delta x} \right)_{i} (\Delta z)_{i} u_{{{\text{mag}},i}} } = \sum\limits_{j = 1}^{n} {\left( {\Delta x} \right)_{j} (\Delta z)_{j} u_{{{\text{mag}},j}} }, $$
(A2)

where i and j are cells in the upper and the lower port regions, respectively, (numbered according to increasing x height when calculating vertical spread angle), N is the total number of cells in the jet region with positive outflow, n is the unknown total number of cells in the lower region to be solved, and umag is the velocity magnitude in each cell in the exit plane of the nozzle port.

Horizontal spread angle, θyz,sp, is calculated in a similar manner, as follows:

$$ \theta_{\text{yz,sp}} = \left| {\theta_{\text{yz}} - \theta_{\text{yz,IR}} } \right| + \left| {\theta_{\text{yz}} - \theta_{\text{yz,OR}} } \right|, $$
(A3)

where θyz is the horizontal jet angle at the nozzle port outlet surface,[25,46] θyz,IR and θyz,OR are the horizontal jet angles in each ~ half-port region, IR and OR side, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, SM., Thomas, B.G. & Kim, SH. Effect of Nozzle Port Angle on Transient Flow and Surface Slag Behavior During Continuous Steel-Slab Casting. Metall Mater Trans B 50, 52–76 (2019). https://doi.org/10.1007/s11663-018-1439-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1439-9

Keywords

Navigation