Skip to main content
Log in

Distributions of Ag, Bi, and Sb as Minor Elements between Iron-Silicate Slag and Copper in Equilibrium with Tridymite in the Cu-Fe-O-Si System at T = 1250 °C and 1300 °C (1523 K and 1573 K)

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

New experimental data on the distributions of silver (Ag), bismuth (Bi), and antimony (Sb) between liquid iron-silicate slag and liquid copper metal in equilibrium with tridymite in the Cu-Fe-O-Si system at T = 1250 °C and 1300 °C (1523 K and 1573 K) have been obtained. The experimental methodology involved high-temperature equilibration, rapid quenching of the equilibrated phases, followed by direct measurement of the equilibrium phases with electron probe X-ray microanalysis (EPMA) for measurement of major element concentrations and laser ablation inductively coupled plasma mass spectrometry (LAICPMS) for the measurement of minor element concentrations. The 4-point test approach was employed to confirm the achievement of chemical equilibrium in the current study. Open-system equilibration on quartz substrates in controlled gas atmospheres (CO/CO2/Ar) and closed-system equilibration in sealed quartz ampoules were used. The new experimental data resolve significant discrepancies found in previous studies and can be used as input for the development of thermodynamic databases for copper-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Nagamori, P.J. Mackey, and P. Tarassoff, Metall. Trans. B, 1975, vol. 6B, pp. 295-301.

    Article  Google Scholar 

  2. S. Goto, O. Ogawa, Y. Inoue, and H. Ohara, J. Min. Metall. Inst. Japan, 1979, vol. 95, pp. 205-211.

    Google Scholar 

  3. A. Yazawa: Extractive metallurgical chemistry with special reference to copper smelting. Proc. 28th Congress of IUPAC, Vancouver, Canada. 1981, pp. 1–21.

  4. Y. Takeda, S. Ishiwata, and A. Yazawa, Trans. Jpn. Inst. Met., 1983, vol. 24, pp. 518-528.

    Article  Google Scholar 

  5. I. Jimbo, S. Goto, and O. Ogawa, Metall. Trans. B, 1984, vol. 15B, pp. 535-541.

    Article  Google Scholar 

  6. S. Surapunt, Y. Takeda, and K. Itagaki, Metallurgical Review fo MMIJ, 1996, vol. 13, pp. 3-21.

    Google Scholar 

  7. H.G. Kim and H.Y. Sohn, Metall. Mater. Trans. B, 1998, vol. 29B, pp. 583-590.

    Article  Google Scholar 

  8. R.R. Kaur, D.R. Swinbourne, and C. Nexhip, Mineral Processing and Extractive Metallurgy, 2009, vol. 118, pp. 65-72.

    Article  Google Scholar 

  9. L. Paulina, PhD Thesis, RMIT University, Melbourne, Australia, 2012.

  10. C. Chen and S. Wright, Metall. Mater. Trans. B, 2016, vol. 47, pp. 1681-1689.

    Article  Google Scholar 

  11. K. Avarmaa, H. O’Brien, and P. Taskinen: Equilibria of gold and silver between molten copper and FeO x -SiO 2 -Al 2 O 3 slag in WEEE Smelting at 1300 °C. Proc. 10th Int. Conf. on Molten Slags, Fluxes and Salts, The Minerals, Metals & Materials Society, Seattle, USA, 2016.

  12. E. Jak, P.C. Hayes, and H.-G. Lee, Met. Mater. (Seoul), 1995, vol. 1, pp. 1-8.

    Google Scholar 

  13. E. Jak: Integrated experimental and thermodynamic modelling research methodology for metallurgical slags with examples in the copper production field. Proc. 9th Int. Conf. on Molten Slags, Fluxes and Salts, The Chinese Society for Metals: Beijing, China, 2012, paper W077.

  14. FactSage 7.0: FactSage thermochemical software. http://www.factsage.com/, 2015.

  15. J. Chen, C.M. Allen, T. Azekenov, L.A. Ushkov, P. Hayes, and E. Jak: Quantitative determination of trace/ultra trace elements concentration in slag and matte generated in copper smelting using microanalysis techniques. Proc. Copper 2016, The Mining and Materials Processing Institute of Japan & Japan Mining Industry Association, Kobe, Japan. 2016, paper PY18-1.

  16. A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B, 2017, vol. 48, pp. 3002-3016.

    Article  Google Scholar 

  17. T. Hidayat, D. Shishin, S.A. Decterov, and E. Jak, Calphad, 2017, vol. 58, pp. 101-114.

    Article  Google Scholar 

  18. T. Hidayat, H.M. Henao, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B, 2012, vol. 43, pp. 1034-1045.

    Article  Google Scholar 

  19. T. Hidayat, P. Hayes, and E. Jak, Metall. Mater. Trans. B, 2018, vol. 49, pp. 1766-1780.

    Article  Google Scholar 

  20. R.W. Ruddle, B. Taylor, and A.P. Bates, Trans. Instn. Min. Metall., 1966, vol. 75, pp. 1-12.

    Google Scholar 

  21. J.R. Taylor and J.H.E. Jeffes, Trans. Instn Min. Metall., 1975, vol. 84, pp. C18-C24.

    Google Scholar 

  22. T. Oishi, M. Kamuo, K. Ono, and J. Moriyama, Metall. Trans. B, 1983, vol. 14B, pp. 101-104.

    Article  Google Scholar 

  23. H.M. Henao, P.C. Hayes, and E. Jak: Phase equilibria of “Cu 2 O”-”FeO”-SiO 2 -CaO slags at PO 2 at 10 −8 atm in equilibrium with metallic copper. Proc. 9th Int. Conf. on Molten Slags, Fluxes and Salts, The Chinese Society for Metals: Beijing, China, 2012, paper W079.

  24. 24. D. Shishin, T. Hidayat, E. Jak, S. Decterov, and G.V. Belov: Thermodynamic database for pyrometallurgical copper extraction. Proc. Copper 2016, The Mining and Materials Processing Institute of Japan & Japan Mining Industry Association, Kobe, Japan. 2016.

Download references

Acknowledgments

The authors would like to thank the Australian Research Council Linkage program LP140100480, Altonorte Glencore, Atlantic Copper, Aurubis, BHP Billiton Olympic Dam Operation, Kazzinc Glencore, PASAR Glencore, Outotec Oy (Espoo), Anglo American Platinum, Umicore, Rio Tinto Kennecott, and Boliden for the financial and technical support for this research. The authors acknowledge the support of the AMMRF at the Centre for Microscopy and Microanalysis at The University of Queensland. The authors also acknowledge the scientific and technical assistances of Dr Charlotte Allen at the Centre of Analytical Research Facilities at Queensland University of Technology, Brisbane, Australia. Thanks are also owed to Mr Hong Wee Kor for his help in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taufiq Hidayat.

Additional information

Manuscript submitted 15 July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidayat, T., Chen, J., Hayes, P.C. et al. Distributions of Ag, Bi, and Sb as Minor Elements between Iron-Silicate Slag and Copper in Equilibrium with Tridymite in the Cu-Fe-O-Si System at T = 1250 °C and 1300 °C (1523 K and 1573 K). Metall Mater Trans B 50, 229–241 (2019). https://doi.org/10.1007/s11663-018-1448-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1448-8

Keywords

Navigation