Skip to main content
Log in

Recovery of Carbon and Valuable Components from Spent Pot Lining by Leaching with Acidic Aluminum Anodizing Wastewaters

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A three-step process was employed to separate cryolite from used carbon cathodes, known as spent pot lining (SPL), and obtain valuable carbon. The process comprised leaching of NaF from the imbedded electrolyte with water, followed by leaching of Na3AlF6, CaF2, and NaAl11O17 with acidic anodizing wastewater, and then precipitating the electrolyte components from the mixed filtrate from the previous two steps. The influences of stirring rate, liquid–solid ratio, temperature, and time on the extent of leaching of cryolite and recovery of carbon were studied. Additionally, the effects of pH value, F/Al ratio, temperature, and time on the recovery of valuable components in the mixed filtrate were evaluated. The results showed that most NaF in the SPL was dissolved by water leaching. The residual electrolyte in SPL was mainly cryolite and contained approximately 0.95 pct NaF. The purity of the carbon obtained reached 95.5 pct under optimal experimental conditions (leaching temperature: 80 °C; stirring rate: 300 rpm; liquid–solid ratio: 8 mL/g; leaching time: 180 minutes). The recovery of cryolite and the purity of the sodium sulfate crystal from the mixed filtrate were 98.4 and 92.0 pct, respectively, under suitable conditions (pH 9; 75 °C; 4 hour; F/Al ratio of 6:1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Courbariaux, J. Chaouki, and C. Guy: Ind. Eng. Chem. Res., 2004, vol. 43, pp. 5828-5837.

    Article  Google Scholar 

  2. V. Gomes, P. Z. Drumond, J. O. P. Neto, and A. R. Lira: Light Metals, TMS, Warrendale, 2005, pp. 1057-1063.

    Google Scholar 

  3. D. Miksa, M. Homsak, and N. Samec: Waste Manage. Res., 2003, vol. 21, pp. 467-473.

    Article  Google Scholar 

  4. CINIC: http://www.cinic.org.cn/hy/js/420347.html

  5. R.P. Pawlek: Light Metals, TMS, Warrendale, 2018, pp. 671-674.

    Google Scholar 

  6. Z. Shi, W. Li, X. Hu, B. Ren, B. Gao, and Z. Wang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 222-227.

    Article  Google Scholar 

  7. D. F. Lisbona, C. Somerfield, and K. M. Steel: Hydrometallurgy, 2013, vols. 134-135, pp. 132-143.

    Article  Google Scholar 

  8. J. A. Camargo: Chemosphere, 2003, vol. 50, pp. 251-264.

    Article  Google Scholar 

  9. X. Zhao and L. Ma: IOP Conf. Ser., 2018, 108, 042023

    Article  Google Scholar 

  10. S. S. Parhi: Master’s Thesisi, National Institute of Technology, Rourkela, Odisha, 2014, p. 12

  11. TMS, P. von Krüger: Light Metals, TMS, 2011, pp. 275-280.

    Google Scholar 

  12. D. Yu, and K. Chattopadhyay: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp.881-891.

    Article  Google Scholar 

  13. D. Yu, V. Mambakkam, A. H. Rivera, D. Li and K. Chattopadhyay: Aluminium International Today, 2015, pp. 5

  14. G. Holywell, R. Breault: JOM, 2013, vol. 65, pp. 1441-1451.

    Article  Google Scholar 

  15. V. Y. Bazhin and R. K. Patrin: Refract. Ind. Ceram, 2011, vol. 52, pp. 63-65.

    Article  Google Scholar 

  16. G. Hamel, R. Breault, G. Charest, S. Poirier, and B. Boutin: Light Metals, TMS, Warrendale, 2009, pp. 921-925.

    Google Scholar 

  17. W. Li and X. Chen: Light Metals, TMS, Warrendale, 2010, pp. 1064-1066.

    Google Scholar 

  18. C. A. Young, S. Nordwick, and M. Foote: The Fourth International Conference on Materials Engineering for Resources, Akita, Japan, 2001, pp. 13-25.

  19. K. Mansfield, G. Swayn, J. Harpley, and P. R. Tayllor: EPD Congress: Fundamentals of Advanced Materials for Energy Conversion, Seattle, USA, 2002, p. 315-27.

  20. J. F. Bush: Light Metals, TMS, Warrendale, 1986, pp. 1081-1099.

    Google Scholar 

  21. L. Pulvirenti, C. W. Mastropietro, A. Barkatt, and S. M. Finger: J. Hazard. Mater, 1996, vol. 46, pp. 13-21.

    Article  Google Scholar 

  22. D. F. Lisbona, S. Christopher, and M. S. Karen: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 8366-8377.

    Article  Google Scholar 

  23. B. S. Scott, D. T. Brett, and W. S. Scott: J. Environ. Chem. Eng., 2015, vol. 3, pp. 2580-2587.

    Article  Google Scholar 

  24. X. Z. Cao, Y. Y. Shi,S. Zhao, and X. X. Xue: J. Northeast. Univ. Nat. Sci., 2014, 35, 1746-1749.

    Google Scholar 

  25. D. F. Lisbona and M. S. Karen: Sep. Purif. Technol., 2008, vol. 61, pp. 182-192.

    Article  Google Scholar 

  26. D. F. Lisbona, C. Somerfield, and K. M. Steel: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 12712-12722.

    Article  Google Scholar 

  27. S. L. Cheng. Master’s Thesis, Nanchang University, Nanchang, 2008, p. 29.

  28. X. H. Liu, X. M. Zhang, S. L. Cheng, and J. J. Chen: Light Metals, 2011, vol. 40, pp. 15-18.

    Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Nos. 51574189, 51774224, 51574191) for financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Li or Zhao Fang.

Additional information

Manuscript submitted August 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yin, W., Fang, Z. et al. Recovery of Carbon and Valuable Components from Spent Pot Lining by Leaching with Acidic Aluminum Anodizing Wastewaters. Metall Mater Trans B 50, 914–923 (2019). https://doi.org/10.1007/s11663-018-1485-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1485-3

Navigation