Skip to main content
Log in

Increased Use of Natural Gas in Blast Furnace Ironmaking: Mass and Energy Balance Calculations

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In blast furnace ironmaking, coke can be partially replaced by injected natural gas. Tuyère injection of cold natural gas is commonly practiced in North America. In this work, limits to the tuyère injection rate have been quantified with mass and energy balances. The fundamental origin of the limits is the endothermicity of methane injection. In principle, shaft injection of preheated and partially combusted methane would obviate the endothermic effect. However, the thermal and chemical energy parameter indicates that the energy requirement in the lower part of the furnace—to melt hot metal and slag—might not be met in the case of shaft injection. Tuyère injection of preheated methane might be a feasible alternative. Calculated combustion kinetics support the feasibility of partial combustion of preheated methane (with sub-stoichiometric oxygen) before injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Steel Association: Steel’s Contribution to a Low Carbon Future, 2014. http://worldsteel.org/.

  2. M.J. Wojewodka, J.P. Keith, S.D. Horvath, M.A. Alter, and C.C. McGovern: AISTech 2014 Proceedings, Association for Iron and Steel Technology, Warrendale, PA, 2014, pp. 767-779.

    Google Scholar 

  3. “2016 AIST North American Blast Furnace Roundup”, Iron and Steel Technology, 2016, vol. 13, pp. 256–59.

  4. P.C. Pistorius, J. Gibson, and M. Jampani. in: Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. The Minerals, Metals and Materials Series, S. Wang, M. Free, S. Alam, M. Zhang, and P. Taylor, eds., Springer, Cham, 2017, pp. 283–92.

  5. A. Hirsch, et al.: New Blast Furnace Process (ULCOS). Report EUR 25085 EN, European Commission, Brussels, 2013.

  6. V.N. Kozub, V.N. Andronov, N.N. Popov, A.A. Bachinin and E.N. Tikhomirov: Steel in the USSR, 1971, vol. 1, pp. 8-10.

    Google Scholar 

  7. A.I. Babich, H.W. Gudenau, K.T. Mavrommatis, C. Froehling, A. Formoso, A. Cores and L. García: Rev. Metal. Madrid, 2002, vol. 38, pp. 288-305.

    Article  Google Scholar 

  8. Tenova HYL and Danieli: Energiron, the innovative direct reduction technology. Tenova, San Nicolás de los Garza, N.L., Mexico, 2014.

    Google Scholar 

  9. T. Guerra: Personal communication, Tenova HYL.

  10. P. Münster and H.J. Grabke: Journal of Catalysis, 1981, vol. 72, pp. 279-287.

    Article  Google Scholar 

  11. J.G. Peacey and W.G. Davenport: The iron blast furnace, theory and practice. Pergamon, Oxford, 1979.

    Google Scholar 

  12. M. Jampani: Increased use of natural gas in blast furnace iron-making. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2016.

  13. A. Rist and N. Meysson: J. Metals, 1967, vol. 19(4), pp. 50–59.

    Google Scholar 

  14. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E.Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M-A. Van Ende: CALPHAD, 2016, vol. 54, pp. 35–53.

    Article  Google Scholar 

  15. O. Kubaschewski, C.B. Alcock and P.J. Spencer: Materials Thermochemistry, 6th edition, Pergamon, Oxford, 1993.

    Google Scholar 

  16. J. Björkvall, Du Sichen, and S. Seetharaman: Ironmaking and Steelmaking, 2001, vol. 28, pp. 250-257.

    Article  Google Scholar 

  17. J. Gibson and P.C. Pistorius: AISTech 2015 Proceedings, Association for Iron & Steel Technology, Warrendale, PA, 2015, pp. 657-671.

    Google Scholar 

  18. J.C. Agarwal, F.C. Brown, D.L. Chin, G.S. Stevens, F.C. Gambol and D.M. Smith: ICSTI/Ironmaking Conference Proceedings, 1998, vol. 57, pp. 443-461.

    Google Scholar 

  19. J.C. Agarwal, F.C. Brown, D.L. Chin, A.R. Frydenlund, N.S. Jessiman, A.P. Lingras and S.J. Sikirica: Ironmaking Conference Proceedings, 1992, vol. 51, pp. 473-479.

    Google Scholar 

  20. P.E. Duarte-Escareño, E. Zendejas-Martinez, A. Tavano, A. Martinis, and O.D. Gaspera: United States of America Patent US8940076 B2, 27 January 2015.

  21. B. Anameric and S.K. Kawatra: Mineral Processing and Extractive Metallurgy, 2007, vol. 28, pp. 59-116.

    Article  Google Scholar 

  22. M. Geerdes, R. van Laar and R. Vaynshteyn: Iron and Steel Technology, 2011, vol. 8(3), pp. 51-56.

    Google Scholar 

  23. S.A. Feshchenko, V.I. Pleshkov, B.N. Lizunov, A.A. Lapshin, K.N. Soveiko, V.N. Loginov and L.E. Vasil’ev: Metallurgist, 2007, vol. 51, pp. 605-611.

    Article  Google Scholar 

  24. A. Babich, D. Senk, H.W. Gudenau and K.T. Mavrommatis: Ironmaking, RWTH Aachen University, Aachen, 2008.

    Google Scholar 

  25. K.R. Muske, J.W. Howse, G.A. Hansen, and D.J. Cagliostro: Advanced Control of Operations in the Blast Furnace Project Phase One Effort Documentation: Optimal Operation and Control of the Blast Furnace Stoves. LANL Technical Report LA-UR-99-5051, Los Alamos National Laboratory, Los Alamos, 1999.

  26. D. Bradley, P.H. Gaskell and X.J. Gu: Combustion and Flame, 1996, vol. 104, pp. 176-198.

    Article  Google Scholar 

  27. X.J. Gu, M.Z. Haq, M. Lawes and R. Woolley: Combustion and Flame, 2000, vol. 121, pp. 41-58.

    Article  Google Scholar 

  28. G. Yu, C.K. Law and C.K. Wu: Combustion and Flame, 1986, vol. 63, pp. 339-347.

    Article  Google Scholar 

  29. H. An, J. Chung, S. Lee and S. Song: International Journal of Hydrogen Energy, 2015, vol. 40, pp. 13994-14005.

    Article  Google Scholar 

  30. D.L. Baulch et. al: Journal of Physical and Chemical Reference Data, 1992, vol. 21, pp. 411-734.

    Article  Google Scholar 

  31. N. Peters and F.A. Williams: Combustion and Flame, 1987, vol. 68, pp. 185-207.

    Article  Google Scholar 

  32. J.C. Ianni: Kintecus, Windows Version 6.01, 2017. www.kintecus.com.

  33. J.C. Ianni: Computational Fluid and Solid Mechanics 2003, Elsevier, 2003, pp. 1368–72.

  34. H.J. Curran, T.M. Jayaweera, W.J. Pitz, and C.K. Westbrook: West. States Sect. Combust. Inst. Spring Meet., Davis, CA, USA, March 2004.

  35. D.N. Koert, W.J. Pitz, J.W. Bozzelli, and N.P. Cernansky: Twenty-sixth Symposium (International) on Combustion, 1996, The Combustion Institute, 1996, pp. 633–40.

  36. J. Warnatz, U. Maas, R.W. Dibble: Combustion, 4th Edition, Springer, Berkeley, 2006, 148-149

    Google Scholar 

  37. M. de Joannon, A. Cavaliere, R. Donnarumma, R. Ragucci: Proceedings of the Combustion Institute, 2002, vol. 29, pp. 1139–1146.

    Article  Google Scholar 

  38. M.F. Riley: Personal Communication, Praxair, Inc., Indianapolis, 2016.

  39. J. Plooij, D. Bergsma, and E. Tesselaar: AISTech 2010 Proceedings, vol. I, Association for Iron and Steel Technology, Warrendale, PA, 2010, pp. 653–60.

    Google Scholar 

Download references

Acknowledgments

Support of this work by the Industrial Members of the Center for Iron and Steelmaking Research at Carnegie Mellon University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jampani, M., Gibson, J. & Pistorius, P.C. Increased Use of Natural Gas in Blast Furnace Ironmaking: Mass and Energy Balance Calculations. Metall Mater Trans B 50, 1290–1299 (2019). https://doi.org/10.1007/s11663-019-01538-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01538-8

Navigation