Skip to main content
Log in

CFD Investigation of Effect of Multi-hole Ceramic Filter on Inclusion Removal in a Two-Strand Tundish

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Multi-hole ceramic filter is regarded as an effective and cheap method of additional flow control device in tundish. In order to evaluate the performance of the ceramic filter, a transient three-dimensional (3D) comprehensive numerical model has been developed to study the flow pattern, temperature distribution and residence time of the molten steel, as well as the elimination of inclusion in a full size two-strand tundish. One-way coupled Euler–Lagrange approach with random walk model was adopted to track the inclusion motion trajectory. The gravity, buoyancy, drag, virtual mass, lift, pressure gradient, and rebound forces were included. The inclusion Reynolds number was utilized for the judgment of the inclusion separation at the slag-steel interface and the internal surface of the filter hole. Besides, the residence time distribution curve has been analyzed for figuring out the macroscopic mixing of the molten steel. The results indicate that the ceramic filter increases the flow resistance of the molten steel in the tundish, resulting in a longer residence time and a higher temperature drop. Except removed by the covering molten slag, the inclusion could also be trapped by the filter hole when the molten steel travels through the ceramic filter. The elimination of the smaller inclusion is significantly improved. The removal ratio of the 1 μm inclusion in the tundish without ceramic filter is only 59.3 pct, while the value is improved to 65.3 pct if we apply the ceramic filter with slenderness ratio of 3 to the tundish. And with the slenderness ratio changing from 3 to 5, the removal ratio of the 1 μm inclusion increases from 65.3 to 72.0 pct. Additionally, the ceramic filter could counteract certain side effects of the increasing inclusion density on the removal, especially for the smaller inclusion. With the inclusion density increasing from 3990 to 5000 kg/m3, the removal ratio of the 1 μm inclusion decreases by 14.5 pct in the tundish without ceramic filter, and after using the ceramic filter, the removal ratio decreases by 13.0, 7.4, and 5.0 pct with the slenderness ratio varies from 3 to 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2010, vol. 50 (3), pp. 331-348.

    Article  CAS  Google Scholar 

  2. Q. Wang, F.S. Qi, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54 (12), pp. 2796-2805.

    Article  CAS  Google Scholar 

  3. S. López-Ramirez, J. de Barreto, J. Palafox-Ramos, R.D. Morales, and D. Zacharias: Metall. Mater. Trans. B, 2001, vol. 32B (4), pp. 615-627.

    Article  Google Scholar 

  4. P.K. Jha, P.S. Rao, and A. Dewan: ISIJ Int., 2008, vol. 48 (2), pp. 154-160.

    Article  CAS  Google Scholar 

  5. J.P. Rogler, L.J. Heaslip, and M. Mehrvar: Can. Metall. Quart., 2004, vol. 43 (3), pp. 407-415.

    Article  CAS  Google Scholar 

  6. S. Neumann, A. Asad, T. Kasper, and R. Schwarze: Metall. Mater. Trans. B, 2019, vol. 50B (5), pp. 2334-2342.

    Article  CAS  Google Scholar 

  7. M.R.M. Yazdi, A.R.F. Khorasani, and S. Talebi: Can. Metall. Quart., 2019, vol. 58 (4), pp. 379-388.

    Article  CAS  Google Scholar 

  8. P Ni, LTI Jonsson, M Ersson, PG Jönsson (2017) Steel Res. Int., 83(3): 1600155.

    Article  CAS  Google Scholar 

  9. R. Mishra and D. Mazumdar: Trans. Indian Inst. Met., 2019, vol. 72 (4), pp. 889-898.

    Article  Google Scholar 

  10. L.H. Wang, H.-G. Lee, and P. Hayes: ISIJ Int., 1996, vol. 36 (1), pp. 17-24.

    Article  CAS  Google Scholar 

  11. S. Ali, R. Mutharasan, and D. Apelian: Metall. Trans. B, 1985, vol. 16B (6), pp. 725-742.

    Article  CAS  Google Scholar 

  12. K. Yamada, T. Watanabe, K. Fukuda, T. Kawaragi, and T. Tashiro: Trans. ISIJ, 1987, vol. 27, pp. 873-877.

    Article  CAS  Google Scholar 

  13. K. Janiszewski: Arch. Metall. Mater., 2013, vol. 58 (2), pp. 513-521.

    Article  CAS  Google Scholar 

  14. L. Bulkowski, U. Galisz, H. Kania, Z. Kudliński, J. Pieprzyca, and J. Barański: Arch. Metall. Mater., 2012, vol. 57 (1), pp. 363-369.

    Article  Google Scholar 

  15. K. Janiszewski: Steel Res. Int., 2013, vol. 84 (3), pp. 288-296.

    Article  CAS  Google Scholar 

  16. M. Warzecha, T. Merder, P. Warzecha, and G. Stradomski: ISIJ Int., 2013, vol. 53 (11), pp. 1983-1992.

    Article  CAS  Google Scholar 

  17. H.-J. Odenthal, M. Javurek, and M. Kirschen: Steel Res. Int., 2009, vol. 80 (4), pp. 264-274.

    CAS  Google Scholar 

  18. H.-J. Odenthal, M. Javurek, M. Kirschen, and N. Vogl: Steel Res. Int., 2010, vol. 81 (7), pp. 529-541.

    Article  CAS  Google Scholar 

  19. M. Javurek, B. Kaufmann, G. Zuba, and P. Gittler: Steel Res., 2002, vol. 73 (5), pp. 186-193.

    Article  CAS  Google Scholar 

  20. E. Gutiérrez, S. Garcia-Hernandez, and J.J. Barreto: Steel Res. Int., 2019, p. 1900328.

  21. F. Xing, S. Zheng, Z. Liu, and M. Zhu (2019) J. Metals, 9(5):561.

    Article  CAS  Google Scholar 

  22. C. Chen: Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2001, pp. 1–4.

  23. Q.F. Hou and Z.S. Zou: ISIJ Int., 2005, vol. 45 (3), pp. 325-330.

    Article  CAS  Google Scholar 

  24. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B (4), pp. 639-654.

    Article  CAS  Google Scholar 

  25. L.F. Zhang, S. Taniguchi, and K.K. Cai: Metall. Mater. Trans. B, 2000, vol. 31B (2), pp. 253-266.

    Article  CAS  Google Scholar 

  26. K. Raghavendra, S. Sarkar, S.K. Ajmani, M.B. Denys, and M.K. Singh: Appl. Math. Model., 2013, vol. 37, pp. 6284-6300.

    Article  Google Scholar 

  27. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45 (11), pp. 1597-1606.

    Article  CAS  Google Scholar 

  28. C. Liu, S.F. Yang, J.S. Li, L.B. Zhu, and X.G. Li: Metall. Mater. Trans. B, 2016, vol. 47B (3), pp. 1882-1892.

    Article  CAS  Google Scholar 

  29. M.J. Assael, K. Kakosimos, R.M. Banish, J. Brillo, I. Egry, R. Brooks, P.N. Quested, K.C. Mills, A. Nagashima, Y. Sato, and W.A. Wakeham (2006) J. Phys. Chem. Ref. Data, 35(1): 285-300.

    Article  CAS  Google Scholar 

  30. T. Nishi, H. Shibata, H. Ohta, and Y. Waseda: Metall. Mater. Trans. A, 2003, vol. 34A (12), pp. 2801-2807.

    Article  CAS  Google Scholar 

  31. S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, and H.B. Yang: Metall. Mater. Trans. B, 2014, vol. 45B (6), pp. 2453-2463.

    Article  CAS  Google Scholar 

  32. Q. Wang, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54 (2), pp. 311-320.

    Article  CAS  Google Scholar 

  33. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2012, vol. 52 (11), pp. 2026-2035.

    Article  CAS  Google Scholar 

  34. Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li: Int. J. Heat Mass Trans., 2018, vol. 125, pp. 1333-1344.

    Article  Google Scholar 

  35. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B (1), pp. 22-35

    Article  CAS  Google Scholar 

  36. D. Bouris and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B (3), pp. 641-649.

    Article  CAS  Google Scholar 

  37. J.K. Kim and P.K. Rohatgi: Metall. Mater. Trans. A, 1998, vol. 29A (1), pp. 351-358.

    Article  CAS  Google Scholar 

  38. K. Takahashi, M. Ando, and T. Ishii: ISIJ Int., 2014, vol. 54 (2), pp. 304-310.

    Article  CAS  Google Scholar 

  39. U.D. Salgado, C. Weiβ, S.K. Michelic, and C. Bernhard: Metall. Mater. Trans. B, 2018, vol. 49B (4), pp. 1632-1643.

    Article  CAS  Google Scholar 

  40. C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Metall. Mater. Trans. B, 2015, vol. 46B (1), pp. 169-190.

    Article  CAS  Google Scholar 

  41. C. Chen, L.T.I. Jonsson, A. Tilliander, G.G. Cheng, and P.G. Jönsson: Chem. Eng. Sci., 2015, vol. 137, pp. 914-937.

    Article  CAS  Google Scholar 

  42. Y. Ono and S. Matsumoto: Trans. JIM, 1975, vol. 17 (7), pp. 415-422.

    Article  Google Scholar 

  43. C. Chen, G.G. Cheng, H.B. Sun, Z.B. Hou, X.C. Wang, and J.Q. Zhang: Steel Res. Int., 2012, vol. 83 (12), pp. 1141-1151.

    Article  CAS  Google Scholar 

  44. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36 (6), pp. 667-672.

    Article  CAS  Google Scholar 

  45. J.H. Shin, Y. Ghung, and J.H. Park: Metall. Mater. Trans. B, 2017, vol. 48B (1), pp. 46-59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ gratitude goes to the National Natural Science Foundation of China [Grant No. U1860205]. Thanks are also given to Prof. Zhu He at Wuhan University of Science and Technology and Prof. Yongxiang Yang at Delft University of Technology for very helpful advising on numerical simulation, and Baoshan Iron & Steel Co., Ltd. for supporting plant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, Y., Huang, A. et al. CFD Investigation of Effect of Multi-hole Ceramic Filter on Inclusion Removal in a Two-Strand Tundish. Metall Mater Trans B 51, 276–292 (2020). https://doi.org/10.1007/s11663-019-01736-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01736-4

Navigation