Skip to main content
Log in

Element Transfer Behaviors of Fused CaF2-TiO2 Fluxes in EH36 Shipbuilding Steel During High Heat Input Submerged Arc Welding

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fused CaF2-TiO2 fluxes are developed and applied on EH36 shipbuilding plates under high heat input submerged arc welding. Transfer behaviors of O and major alloying elements are systematically investigated. TiO2 contributes to O gain in the weld pool, but leads to concurrent losses of Si, Mn, and C via deoxidation and decarburization reactions. Transfer of Ti to the weld metal is suppressed due to improved flux O potential and chemical interaction between CaF2 and TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. V. Sengupta, D. Havrylov and P. Mendez: Weld. J., 2019, vol. 98, pp. 283–313.

    Google Scholar 

  2. S. Kou: Welding Metallurgy, 2nd ed.,Wiley & Sons, New York, NY, 2003, pp. 22–95.

    Google Scholar 

  3. T. Lau, G. Weatherly and A. McLean: Weld. J., 1985, vol. 64, pp. 343–47.

    Google Scholar 

  4. T. Lau, G. Weatherly and A. McLean, Weld. J., 1986, vol. 65, pp. 31–38.

    Google Scholar 

  5. D. Olson, S. Liu, R.H. Frost, G. Edwards and D. Fleming: Nature and Behavior of Fluxes Used for Welding, ASM Handbook, Materials Park, OH, 1993, vol. 6, pp. 43–54.

    Google Scholar 

  6. T. Eagar: Weld. J., 1978, vol. 57, pp. 76–80.

    Google Scholar 

  7. C. Natalie, D. Olson and M. Blander: Annu. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    Article  CAS  Google Scholar 

  8. S. Tuliani, T. Boniszewski and N. Eaton: Weld. Met. Fabr., 1969, vol. 37, pp. 327–39.

    CAS  Google Scholar 

  9. J. Zhang, T. Coetsee and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 16–21.

    Article  CAS  Google Scholar 

  10. C. Dallam, S. Liu and D. Olson: Weld. J., 1985, vol. 64, pp. 140–51.

    Google Scholar 

  11. J. Zhang, J. Leng and C. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2083–87.

    Article  Google Scholar 

  12. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 885-90.

    Article  Google Scholar 

  13. C. Chai and T. Eagar: Weld. J., 1982, vol. 61, pp. 229–32.

    Google Scholar 

  14. R. Kohno, T. Takami, N. Mori and K. Nagano: Weld. J., 1982, vol. 61, pp. 373–80.

    Google Scholar 

  15. L. Lan, X. Kong, C. Qiu and D. Zhao: Mater. Des., 2016, vol. 90, pp. 488–98.

    Article  CAS  Google Scholar 

  16. K. Bang, C. Park, H. Jung and J. Lee: Met. Mater. Int., 2009, vol. 15, pp. 471–77.

    Article  CAS  Google Scholar 

  17. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22B, pp. 73–81.

    Article  CAS  Google Scholar 

  18. R. Farrar and P. Harrison: J. Mater. Sci., 1987, vol. 22, pp. 3812–20.

    Article  CAS  Google Scholar 

  19. A. Mercado, V. Hirata, H. Rosales, P. Diaz and E. Valdez: Mater. Charact., 2009, vol. 60, pp. 36–39.

    Article  Google Scholar 

  20. J. Roy, R. Rai and S. Saha: Int. J. Mater. Prod. Technol., 2018, vol. 56, pp. 313–25.

    Article  Google Scholar 

  21. P. Burck, J. Indacochea and D. Olson: Weld. J., 1990, vol. 3, pp. 115–22.

    Google Scholar 

  22. J. Indacochea, M. Blander, N. Christensen and D. Olson: Metall. Trans. B, 1985, vol. 16B, pp. 237–45.

    Article  CAS  Google Scholar 

  23. N. Pandey, A. Bharti and S. Gupta: J. Mater. Process. Technol., 1994, vol. 40, pp. 195–211.

    Article  Google Scholar 

  24. P. Kanjilal, T. Pal and S. Majumdar: Weld. J., 2007, vol. 10, pp. 135–46.

    Google Scholar 

  25. J. Zhang, T. Coetsee, H. Dong, and C. Wang: Metall. Mater. Trans. B, 2020, https://doi.org/10.1007/s11663-020-01869-x.

  26. J. Zhang, T. Coetsee, H. Dong, and C. Wang: Metall. Mater. Trans. B, 2020, https://doi.org/10.1007/s11663-020-01879-9.

  27. C. Chai: Slag-Metal Reactions during Flux Shielded Arc Welding, Massachusetts Institute of Technology, Cambridge, MA, 1980.

    Google Scholar 

  28. K. Mills and B. Keene: Int. Met. Rev., 1981, vol. 26, pp. 21–69.

    Article  CAS  Google Scholar 

  29. C. Jackson: Weld. Res. Counc. Bull., 1973, No.190.

  30. L. Hillert: Acta Polytech. Scand., 1970, No. 90.

  31. S. Yakobashvili: Arotreferat Kandidata Teckhn., 1963, Nauk. Akad. Nauk Ukr. SSR, Kiev.

  32. A.Goncharov, A. Manakov, and P. Kovalcv: Tr. Inst. Met. Akad. Nauk, Uralsk Nauk Tsentr., 1972, vol. 24, p. 159.

  33. C. Chai and T. Eagar: Metall. Trans. B, 1981, vol. 12B, pp. 539–47.

    Article  CAS  Google Scholar 

  34. U. Mitra: Kinetics of Slag Metal Reactions during Submerged Arc Welding of Steel, Massachusetts Institute of Technology, Cambridge, MA, 1984.

    Google Scholar 

  35. A. Erokhin: Theory of Fusion Welding, 1st ed., China Machinery Press, Beijing, 1981, pp. 232–33.

    Google Scholar 

  36. J. Devletian, J. Chen, W. Wood and T. Eagar: Fundamental Aspects of Electroslag Welding of Titanium Alloys, ASM International, Materials Park, OH, 1990, pp. 419–24.

    Google Scholar 

  37. A. Sikorski: Weld. Int., 1993, vol. 7, pp. 683–85.

    Article  Google Scholar 

  38. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22B, pp. 83–100.

    Article  CAS  Google Scholar 

Download references

We thank the National Natural Science Foundation of China (Grant Nos. 51622401, 51861130361, 51861145312, and 51850410522), Royal Academy of Engineering (TSPC1070), Newton Advanced Fellowship by the Royal Society (Grant No. RP12G0414), Research Fund for Central Universities (Grant No. N172502004, N2025025), Xingliao Talents Program (XLYC1807024 and XLYC1802024), Liaoning Key Industrial Program (2019JH1/10100014), The Innovation Team of Northeastern University, and Global Talents Recruitment Program endowed by the Chinese government for their financial support. We thank the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (Grant No. SKLSP201805), Shagang Steel, and Lincoln Electric China. This work is also funded in part by the National Research Foundation of South Africa (BRICS171211293679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 28, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Coetsee, T., Dong, H. et al. Element Transfer Behaviors of Fused CaF2-TiO2 Fluxes in EH36 Shipbuilding Steel During High Heat Input Submerged Arc Welding. Metall Mater Trans B 51, 1953–1957 (2020). https://doi.org/10.1007/s11663-020-01936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01936-3

Navigation