Skip to main content
Log in

Effect of Mold Cavity Design on the Thermomechanical Behavior of Solidifying Shell During Microalloyed Steel Slab Continuous Casting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Corner transverse cracks are frequently observed on microalloyed steel slabs during continuous casting. As a solution to this problem, double phase-transformation technology could improve the ductility of the shell surface and avoid corner cracks. However, this technology requires a high cooling rate, which is difficult to reach in traditional flat plate molds (TFMs). Therefore, a novel convex structure mold (NCM) was designed to intensify corner cooling. To investigate the effects of mold design on interfacial heat transfer between the solidifying shell and mold, a thermomechanical model was developed considering the dynamic distributions of the mold slag layers and air gaps. Afterward, the interfacial heat fluxes between mold and solidifying shell obtained from the thermomechanical model were loaded on the flow, heat transfer, and solidification model to study the comprehensive influence of mold cavity design and steel flow on the shell temperature. Based on the models, the contact conditions, distributions of interfacial heat transfer media, interfacial heat fluxes, and temperatures and thicknesses of the solidifying shells were thoroughly compared between the TFM and NCM. The results show that the NCM provides a more appropriate compensation for the shell shrinkage; as a result, the thick slag layers concentrating in the corners of the TFM are flattened and homogenized in the NCM. Thicker slag layers in the TFM weaken the corner heat transfer and lead to uneven shell growth in the off-corner area. Meanwhile, the NCM could homogenize the off-corner heat transfer and increase the cooling rate of the shell corner to help implement double phase-transformation technology in the high-temperature zone of casters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Meng, B.G. Thomas, Metall. Mater. Trans. B 34B, 685–705 (2003)

    Article  CAS  Google Scholar 

  2. C. Li, B.G. Thomas, Metall. Mater. Trans. B 35B, 1151–1172 (2004)

    Article  CAS  Google Scholar 

  3. J.K. Park, C. Li, B.G. Thomas, and I.V. Samarasekera: 60th Electr. Furn. Conf., San Antonio, TX, 2002, AIST, Warrendale, PA, 2002, vol. 60, pp. 669–86.

  4. D.J. Jing, K.K. Cai, Acta Metall. Sin. 36, 403–406 (2000)

    CAS  Google Scholar 

  5. C. Li, and B.G. Thomas: ISSTech Steelmak. Conf., Indianapolis, IN, USA, 2003, ISS-AIME, Warrendale, PA, 2003, pp. 685–700.

  6. B.G. Thomas and C. Ojeda: ISSTech Steelmak. Conf., Indianapolis, IN, USA, 2003, ISS-AIME, Warrendale, PA, 2003, pp. 295–308.

  7. Y.M. Won, T.J. Yeo, K.H. Oh, J.K. Park, J. Choi, C.H. Yim, ISIJ Int. 38, 53–62 (1998)

    Article  CAS  Google Scholar 

  8. R.B. Mahapatra, J.K. Brimacombe, I.V. Samarasekera, Metall. Mater. Trans. B 22B, 875–888 (1991)

    Article  CAS  Google Scholar 

  9. J.K. Brimacombe, F. Weinberg, E.B. Hawbolt, Metall. Trans. B 10B, 279–292 (1979)

    Article  CAS  Google Scholar 

  10. N. Yamasaki, S. Shima, K. Tsunenari, S. Hayashi, M. Doki, Y. Kato, D. Miki, T. Nakanishi, Nippon Steel Sumitomo Met. Tech. Rep. 112, 64–70 (2016)

    Google Scholar 

  11. S.N. Berdnikov, A.E. Pozin, A.A. Podosyan, A.S. Berdnikov, V.A. Mokhov, K.N. Vdovin, Steel Transl. 42, 180–182 (2012)

    Article  Google Scholar 

  12. Z. Cai, M. Zhu, ISIJ Int. 53, 1818–1827 (2013)

    Article  CAS  Google Scholar 

  13. J.K. Brimacombe, K. Sorimachi, Metall. Trans. B 8B, 489–505 (1977)

    Article  CAS  Google Scholar 

  14. P. Hu, H. Zhang, M. Wang, M. Zhu, X. Zhang, Y. Zhang, and Z. Zhang: Metall Res Technol, 2015, vol. 112, 104-113.

    Article  Google Scholar 

  15. S. Yu, M. Long, D. Chen, H. Fan, H. Yu, H. Duan, X. Xie, T. Liu, J. Mater. Process. Technol. 270, 157–167 (2019)

    Article  Google Scholar 

  16. P. Lyu, W. Wang, X. Long, K. Zhang, E. Gao, R. Qin, Metall. Mater. Trans. B 49B, 78–88 (2017)

    Google Scholar 

  17. S.V. Filatov, A.I. Dagman, V.N. Karavaev, V.P. Glebov, G.N. Kononykhin, A.B. Kotel’nikov, A.A. Vopneruk, Metallurgist 62, 58–61 (2018)

    Article  Google Scholar 

  18. F.J. Ma, G.H. Wen, P. Tang, X. Yu, J.Y. Li, G.D. Xu, F. Mei, Ironmak. Steelmak. 37, 73–79 (2010)

    Article  CAS  Google Scholar 

  19. T. Kato, Y. Ito, M. Kawamoto, A. Yamanaka, T.J.I. Watanabe, ISIJ Int. 43, 1742–1750 (2003)

    Article  CAS  Google Scholar 

  20. C. Du, J. Zhang, J. Wen, Y. Li, P. Lan, Ironmak. Steelmak. 43, 331–339 (2016)

    Article  CAS  Google Scholar 

  21. J. Liu, G. Wen, P. Tang, Metall. Mater. Trans. B 48B, 3074–3082 (2017)

    Article  Google Scholar 

  22. F.J. Ma, G.H. Wen, P. Tang, X. Yu, J.Y. Li, G.D. Xu, F. Mei, Ironmak. Steelmak. 37, 211–218 (2010)

    Article  CAS  Google Scholar 

  23. Z. Niu, Z. Cai, M. Zhu, ISIJ Int. 59, 283–292 (2019)

    Article  CAS  Google Scholar 

  24. MSC Marc, Theory and User Information (MSC Software Corporation, Newport Beach, 2016).

    Google Scholar 

  25. Z. Cai, M. Zhu, Acta Metall. Sin. 47, 671–677 (2011)

    CAS  Google Scholar 

  26. X. Liu, M. Zhu, ISIJ Int. 46, 1652–1659 (2006)

    Article  CAS  Google Scholar 

  27. K. Liu, Y.H. Chang, Z.G. Han, J.Q. Zhang, J. Iron Steel Res. Int. 20, 38–47 (2013)

    Google Scholar 

  28. Z. Niu, Z. Cai, and M. Zhu: Ironmak. Steelmak., 2019, vol. 47, pp. 1135-47

    Article  Google Scholar 

  29. H. Mizukami, K. Murakami, Y. Miyashita, Tetsu-to-Hagane 63, 652 (1977)

    Google Scholar 

  30. M. Uehara, I.V. Samarasekera, J.K. Brimacombe, Ironmak. Steelmak. 13, 138–153 (1986)

    Google Scholar 

  31. ANSYS Inc., ANSYS FLUENT 16.2 Theory Guide (ANSYS, Inc., Canonsburg, 2015).

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51774075, 51404061) and Fundamental Research Funds for the Central Universities of China (N182504013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaozhen Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 21, 2020; accepted February 8, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Cai, Z. & Zhu, M. Effect of Mold Cavity Design on the Thermomechanical Behavior of Solidifying Shell During Microalloyed Steel Slab Continuous Casting. Metall Mater Trans B 52, 1556–1573 (2021). https://doi.org/10.1007/s11663-021-02123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02123-8

Navigation