Skip to main content
Log in

Molecular Dynamics Simulations of Melt Structure Properties of CaO–Al2O3–Na2O Slag

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations have been used to study the effect of Na ions on the structure properties of CaO–Al2O3–Na2O slag. The short- and medium-range structures of CaO–Al2O3–Na2O in this study are consistent with existing data. Through the replacement of Ca2+ ions with Na+ ions in CaO–Al2O3–Na2O slag, the structure of the AlO4 tetrahedron is stabilized as the proportion of AlO4 tetrahedron in the melt increases and the average values of the O–Al–O bond angle are closer to those of an ideal tetrahedron. The changes in the melt structure show that Ca2+ ions mainly play a role in modifying the network, while Na+ ions mainly play a role in the charge compensation of the AlO4 tetrahedron; thus, as more Na+ ions replace Ca2+ ions added to the melt, the charge compensation ability in the melt is enhanced, and the network modification ability is weakened. Part of the weak non-bridge oxygen (NBO) structures in the form of Al–NBO–Ca are transformed to strong bridge oxygen (BO) structures in the form of Al–BO–Al, and the microstructure of the melt gradually becomes complicated, which provides a reasonable explanation for the mechanism for the increase of macroscopic viscosity in CaO–Al2O3–Na2O slag with high Al content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.H. Moon, M.S. Park, S. Yoo, J.K. Park, J.W. Cho, and G. Shin: Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, 2013, Springer, Cham, pp. 735–45.

  2. [2] O. Grässel, L. Krüger, G. Frommeyer and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-409.

    Article  Google Scholar 

  3. [3] B. Lu, K. Chen, W. Wang and B. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1496-509.

    Article  Google Scholar 

  4. [4] L. Zhang, W. Wang and H. Shao: J. Iron Steel Res. Int., 2019, vol. 26, pp. 336-44.

    Article  CAS  Google Scholar 

  5. [5] W. Wang, D. Cai and L. Zhang: ISIJ Int., 2018, vol. 58, pp. 1957-64.

    Article  CAS  Google Scholar 

  6. [6] G. Shi, T. Zhang, L. Niu, Z. Dou: J. Northeastern University (Natural Science), 2012, vol. 33, pp. 1000-3.

    CAS  Google Scholar 

  7. [7] Y.L. Zhen, G.H. Zhang, X.L. Tang and K.C. Chou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 123-30.

    Article  Google Scholar 

  8. [8] Y. Harada, S. Sukenaga, N. Saito and K. Nakashima: ISIJ Int., 2019, vol. 59, pp. 1956-65.

    Article  CAS  Google Scholar 

  9. [9] L. Cormier and D.R. Neuville: Chem. Geol., 2004, vol. 213, pp. 103-13.

    Article  CAS  Google Scholar 

  10. [10] A. Navrotsky, G. Peraudeau, P. Mcmillan and J.P. Coutures: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2039-47.

    Article  CAS  Google Scholar 

  11. [11] F. Domine and B. Piriou: Am. Miner., 1986, vol. 71, pp. 38-50.

    CAS  Google Scholar 

  12. [12] B.O. Mysen and D. Virgo: Geochim. Cosmochim. Acta, 1980, vol. 44, pp. 1917-30.

    Article  CAS  Google Scholar 

  13. [13] G.H. Zhang and K.C. Chou: J. Min. Metall. Sect. B-Metall., 2012, vol. 48, pp. 433-42.

    Article  Google Scholar 

  14. [14] R.N. Mead, G. Mountjoy: J. Phys. Chem. B, 2006, vol. 110, pp. 14273-78.

    Article  CAS  Google Scholar 

  15. [15] T. Wu, S. He, Y. Liang and Q. Wang: J. Non-Cryst. Solids, 2015, vol. 411, pp. 145-51.

    Article  CAS  Google Scholar 

  16. [16] T. Wu, Q. Wang, T. Yao and S. He: J. Non-Cryst. Solids, 2016, vol. 435, pp. 17-26.

    Article  CAS  Google Scholar 

  17. [17] V.D. Eisenhüttenleute: Slag Atlas, Verlag Stahleisen GmbH, Düsseldorf, 1995, p. 104.

    Google Scholar 

  18. [18] T. Jia: Sci. Technol. Transl, 1994, vol. 1, pp. 54–57 (in Chinese).

    Google Scholar 

  19. [19] S. Nosé: Molec. Phys., 1984, vol. 52, pp. 255-68.

    Article  Google Scholar 

  20. [20] L. Cormier, D.R. Neuville and G. Calas: J. Non-Cryst. Solids, 2000, vol. 274, pp. 110-14.

    Article  CAS  Google Scholar 

  21. [21] A.C. Hannon and J.M. Parker: J. Non-Cryst. Solids, 2000, vol. 274, pp. 102-9.

    Article  CAS  Google Scholar 

  22. [22] Z. Bi, K. Li, C. Jiang, J. Zhang, S. Ma: J. Non-Cryst. Solids, 2021, vol. 559, pp. 120687-1-9.

    Article  Google Scholar 

  23. [23] C. Karlsson, E. Zanghellini, J. Swenson, B. Roling, D.T. Bowron, L. Börjesson: Phys. Rev. B, 2005, vol. 72, pp. 064206-1-12.

    Google Scholar 

  24. [24] K Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwalla, C. V. Singh, M. Barati: 2017, Chem. Eng. J., vol. 313, pp. 1184-93.

    Article  CAS  Google Scholar 

  25. [25] J. Machacek, S. Charvatova, O. Gedeon and M. Liska: Adv. Mater. Res., 2008, vol. 39-40, pp. 85-88.

    Article  Google Scholar 

  26. [26] A.N. Cormack and J. Du: J. Non-Cryst. Solids, 2001, vol. 293-295, pp. 283-89.

    Article  Google Scholar 

  27. [27] J.D. Kubicki and M.J. Toplis: Am. Miner., 2002, vol. 87, pp. 668-78.

    Article  CAS  Google Scholar 

  28. [28] J.F. Stebbins, J.V. Oglesby and S. Kroeker: Am. Miner., 2001, vol. 86, pp. 1307-11.

    Article  CAS  Google Scholar 

  29. [29] K. Zheng, Z. Zhang, F. Yang, S. Sridhar: ISIJ Int., 2012, vol. 52, pp. 342-49.

    Article  CAS  Google Scholar 

  30. [30] L. Cormier, D. Ghaleb, D. R. Neuville, J.M. Delaye, G. Calas: J. Non-Cryst. Solids, 2003, vol. 332, pp. 255-70.

    Article  CAS  Google Scholar 

  31. [31] M.J. Toplis, D.B. Dingwell and T. Lenci: Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 2605-12.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51874082 and U1908224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 25, 2021; accepted April 7, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, C. & Jiang, M. Molecular Dynamics Simulations of Melt Structure Properties of CaO–Al2O3–Na2O Slag. Metall Mater Trans B 52, 2604–2611 (2021). https://doi.org/10.1007/s11663-021-02184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02184-9

Navigation