Skip to main content
Log in

Assessment of Weld Metal Compositional Prediction Models Geared Towards Submerged Arc Welding: Case Studies Involving CaF2-SiO2-MnO and CaO-SiO2-MnO Fluxes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Submerged arc welding has been performed by utilizing CaF2-SiO2-MnO and CaO-SiO2-MnO fluxes over a wide range of compositions and basicity index values. Contents of essential elements, including O, Si, and Mn, in the weld metal, are predicted by employing the basicity index model, slag–metal equilibrium model, and gas–slag–metal equilibrium model. Capabilities of each model to predict weld metal compositions have been evaluated from thermodynamic perspectives. The results show that the basicity index model is capable of predicting the variation trend of O content with MnO addition, but fails to differentiate O levels when fluxes with same basicity index are applied. The slag–metal model overestimates the contents of Si and Mn due to underestimated O level or overestimated oxide activity. The gas–slag–metal equilibrium model, on the other hand, offers better prediction accuracy for O content than the basicity index model, and is able to differentiate the O content of the weld metals produced by fluxes with varying formulas but same basicity index. Furthermore, when the gas–slag–metal equilibrium model is applied, the prediction error for Si and Mn contents is significantly reduced as compared to the slag–metal equilibrium model. Thermodynamic calculation data indicates that the consideration of gas formation, which essentially controls the predicted flux O potential and oxide activity, is necessary to improve the overall prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. S. Kou: Welding Metallurgy, 2nd ed.,Wiley & Sons, New York, NY, 2003, pp. 22–114.

    Google Scholar 

  2. 2. V. Sengupta, D. Havrylov and P. Mendez: Weld. J., 2019, vol. 98, pp. 283–313.

    Google Scholar 

  3. 3. D. Olson, S. Liu, R.H. Frost, G. Edwards and D. Fleming: Nature and Behavior of Fluxes Used for Welding, ASM Handbook, Materials Park, OH, 1993, vol. 6, pp. 43–54.

    Google Scholar 

  4. 4. C. Natalie, D. Olson and M. Blander: Ann. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    Article  CAS  Google Scholar 

  5. 5. J. Zhang, J. Leng and C. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2083–2087.

    Article  Google Scholar 

  6. 6. C. Dallam, S. Liu and D. Olson: Weld. J., 1985, vol. 64, pp. 140–151.

    Google Scholar 

  7. 7. C. Chai: Slag–metal Reactions during Flux Shielded Arc Welding, Massachusetts Institute of Technology, Cambridge, MA, 1980.

    Google Scholar 

  8. 8. J. Zhang, T. Coetsee and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 16–21.

    Article  Google Scholar 

  9. 9. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 885–890.

    Article  Google Scholar 

  10. 10. R. Farrar and P. Harrison: J. Mater. Sci. 1987, vol. 22, pp. 3812–3820.

    Article  CAS  Google Scholar 

  11. 11. A. Fox, M. Eakes and G. Franke: Weld. J., 1996, vol. 75, pp. 330–342.

    Google Scholar 

  12. 12. S. Babu: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 267–3278.

    Article  CAS  Google Scholar 

  13. 13. S. Tuliani, T. Boniszewski and N. Eaton: Weld. Met. Fabr., 1969, vol. 37, pp. 327–339.

    CAS  Google Scholar 

  14. 14. Y. Ito, M. Nakaniski and N. Katsumoto: The Sumitomo Search, 1976, vol. 16, pp. 42–62.

    Google Scholar 

  15. 15. Burck, J. Indacochea and D. Olson: Weld. J., 1990, vol. 3, pp. 115–122.

    Google Scholar 

  16. 16. K. Ferrera and D. Olson: Weld. J, 1975, vol. 54, pp. 211–215.

    Google Scholar 

  17. 17. J. Palm: Weld. J., 1972, vol. 51, p. 358–360.

    Google Scholar 

  18. 18. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1350–1354.

    Article  Google Scholar 

  19. 19. C. Chai and T. Eagar: Weld. J., 1982, vol. 61, pp. 229–232.

    Google Scholar 

  20. 20. T. Lau, G. Weatherly and A. McLean: Weld. J., 1985, vol. 64, pp. 343–347.

    Google Scholar 

  21. 21. T. Eagar: Weld. J., 1978, vol. 57, pp. 76–80.

    Google Scholar 

  22. 22. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1805–1812.

    Article  Google Scholar 

  23. 23. C. Chai and T. Eagar, J. Mater. Energy Syst., 1983, vol. 5, pp. 160–164.

    Article  CAS  Google Scholar 

  24. 24. C. Chai and T. Eagar: Metall. Trans. B, 1981, vol. 12, pp. 539–547.

    Article  CAS  Google Scholar 

  25. 25. G. Evans: Weld. J., 1983, vol. 19, pp. 133–320.

    Google Scholar 

  26. 26. A. Liby, R. Dixon, and D. Olson: Welding: Theory and Practice, 1st ed., Elsevier Science Publishers B, Amsterdam, Netherlands, 1990, pp. 117–168.

    Google Scholar 

  27. 27. J. Zhang, T. Coetsee, S. Basu and C. Wang: CALPHAD, 2020, vol. 71, 102195.

    Article  CAS  Google Scholar 

  28. 28. T. Lau, G. Weatherly and A. McLean: Weld. J., 1986, vol. 65, pp. 31–38.

    Google Scholar 

  29. 29. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1953–1957.

    Article  Google Scholar 

  30. 30. J. Indacochea, M. Blander, N. Christensen and D. Olson: Metall. Trans. B, 1985, vol. 16, pp. 237–245

    Article  CAS  Google Scholar 

  31. T. Eagar, In Proc. of Elliot Symp. on Chemical Process Metallurgy, 1991, pp. 197–208.

  32. 32. T. North, H. Bell, A. Nowicki and I. Craig: Weld. J., 1978, vol. 57, pp. 63–75.

    Google Scholar 

  33. 33. U. Mitra and T. Eagar: Metall. Trans. A, 1984, vol. 15, pp. 217–227.

    Article  CAS  Google Scholar 

  34. 34. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 73–81.

    Article  CAS  Google Scholar 

  35. 35. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 65–71.

    Article  CAS  Google Scholar 

  36. 36. N. Christensen and J. Chipman, Weld. J., 1953, vol. 15, pp. 1–14.

    Google Scholar 

  37. 37. G. Belton, T. Moore and E. Tankins, Weld. J., 1963, vol. 42, pp. 289–297.

    Google Scholar 

  38. 38. P. Kanjilal, T. Pal and S. Majumdar: Weld. J., 2007, vol. 10, pp. 135–146.

    Google Scholar 

  39. 39. U. Mitra: Kinetics of Slag Metal Reactions during Submerged Arc Welding of Steel, Massachusetts Institute of Technology, Cambridge, MA, 1984.

    Google Scholar 

  40. 40. A. Polar, J. Indacochea and M. Blander, Weld. J., 1991, vol. 70, pp. 15–19.

    Google Scholar 

  41. 41. I. Pokhodnya and B. Kostenko: Automat Weld, 1965, vol. 18, pp. 21–29.

    Google Scholar 

  42. 42. A. Bolten and T. Eagar: Metall. Mater. Trans. B, 1984, vol. 15, pp. 461–469.

    Article  Google Scholar 

  43. 43. Z. Yang and T. DebRoy: Metall. Mater. Trans. B, 1999, vol. 30, pp. 483–493.

    Article  CAS  Google Scholar 

  44. 44. H. Zhao and T. DebRoy: Metall. Mater. Trans. B, 2001, vol. 32, pp. 163–172.

    Article  CAS  Google Scholar 

  45. 45. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Mahfoud, J. Melançon, A. Pelton and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  46. 46. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 83–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant Nos. U20A20277, 51861130361, 51861145312, 51850410522, 5201101443, and 52011530180), Newton Advanced Fellowship by the Royal Society (Grant No. RP12G0414), Research Fund for Central Universities (Grant Nos. N172502004, N2025025), Xingliao Talents Program (Grant Nos. XLYC1807024 and XLYC1802024), Liaoning Key Industrial Program (Grant No. 2019JH1/10100014), The Innovation Team of Northeastern University, and Royal Academy of Engineering (Grant No. TSPC1070) for their financial support. This work is also funded in part by the National Research Foundation of South Africa (Grant No. BRICS171211293679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 16, 2020, accepted April 9, 2021.

Appendices

Appendix A: Prediction of O Content Using Flux BI Model

O contents are predicted from Figure A1 using both Tuliani and Eagar BIs illustrated in Table I. The predicted O levels from Tuliani and Eagar BIs are summarized in Table AI.

Fig. A1
figure 11

Predicted O content of WM as a function of flux BI

Table AI Predicted O Content (Parts Per Million) From Flux BI

Appendix B: Prediction of Si and Mn Contents Using Slag–Metal Model

Mn and Si contents are predicted from the slag–metal equilibrium model proposed by Chai et al., as follows:

The equilibrium constant of Reaction [3] is referenced as Eq. [B1].

$$ \log K_{1} = - \frac{28360}{T}{ + 10} . 6 1 $$
(B1)

The equilibrium temperature of 2273 K is set, and all interaction terms are neglected. Then, Eq. [B2], proposed by Chai et al., is applied to predict Si content ([pct Si]);[7,18,24] in Eq. [B2], [pct O] is the predicted O level from the Eagar BI (see Table AI). The data of SiO2 activity \( \left( {\alpha_{{{\text{SiO}}_{ 2} }} } \right) \) is obtained from FactSage 7.3 (Equilib Module) using the FToxid database (ASlag-liq all oxides and S (FToxid-SLAGA) solution phase are selected) with flux formulas in Table I as input.[45] The activities of SiO2 \( \left( {\alpha_{{{\text{SiO}}_{ 2} }} } \right) \) used in slag–metal equilibrium model are given in Table IV.

$$ \left[ {{\text{pct}}\,{\text{Si}}} \right] = \frac{{\alpha_{{{\text{SiO}}_{ 2} }} }}{{ 7 3. 6\cdot \left[ {{\text{pct}}\,{\text{O}}} \right]^{2} }} $$
(B2)

Similarly, the equilibrium constant of Reaction [4] is referenced as Eq. [B3]; ignoring all interaction terms, Eq. [B4] is used in the models of Chai et al.[7,24] to predict Mn content ([pct Mn]). The activity of MnO activity (αMnO) used in Eq. [B4] are calculated from FactSage 7.3 (Equilib Module) using the FToxid database (ASlag-liq all oxides and S (FToxid-SLAGA) solution phase are selected), during which flux formulas in Table I were set as input. The activities of MnO (αMnO) used in slag–metal equilibrium model are summarized in Table V.[45]

$$ \log K_{2} { = } - \frac{12760}{T}{ + 5} . 6 8 $$
(B3)
$$ \left[ {{\text{pct}}\,{\text{Mn}}} \right] = \frac{{\alpha_{\text{MnO}} }}{{ 0. 8 6\cdot \left[ {{\text{pct}}\,{\text{O}}} \right]}} $$
(B4)

Appendix C: Prediction Using Gas–Slag–Metal Equilibrium Calculation

Similar to previous studies, nominal compositions, which refer to the contents considering only the dilution effects of the BM and electrode,[15,30] are used as the input metal chemistries.[8,9,18,27] Nominal compositions are calculated from Eq. [C1], in which dBM represents the dilution value of BM.[8,46]

$$ {\text{Nominal}}\,{\text{comp}} .\,{ = }\,d_{\text{BM}} \, \times \,{\text{base}}\,{\text{metal}}\,{\text{comp}} .\,{ + }\,\left( { 1\, - \,d_{\text{BM}} } \right)\, \times \,{\text{electrode}}\,{\text{comp}} . $$
(C1)

dBM equals to the ratio of the area below the plate surface to the total WM area. To determine these areas, WMs were cross-sectioned, polished, and etched using 4 wt pct nital solution.[8,9,18,22,29,38] Calculated nominal compositions and dBM values are given in Table CI (‘N’ subscript means nominal composition).

Table CI Nominal Compositions (Weight Percent) and dBM

The flux formulas given in Table I are set as input flux compositions.

Equilib Module of FactSage 7.3 is employed to perform gas–slag–metal equilibrium following the settings in our previous study:[27]

  1. 1.

    FToxid, Fstel, and FactPS databases are selected. Solution phases of ASlag-liq all oxides, S (FToxid-SLAGA), and LIQUID (FStel-Liqu) were selected to model the molten slag and steel phases.

  2. 2.

    The equilibrium temperature in SAW of 2273 K is set.

  3. 3.

    The mass ratio of flux to the electrode is set as unity.

Parts of gas compositions calculated from gas–slag–metal equilibrium calculations are summarized in Table CII. Activities of SiO2 and MnO calculated from gas–slag–metal equilibrium models are given in Tables IV and V.

Table CII Gas–Slag–Metal Equilibrium Gas Components

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, C. & Coetsee, T. Assessment of Weld Metal Compositional Prediction Models Geared Towards Submerged Arc Welding: Case Studies Involving CaF2-SiO2-MnO and CaO-SiO2-MnO Fluxes. Metall Mater Trans B 52, 2404–2415 (2021). https://doi.org/10.1007/s11663-021-02190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02190-x

Navigation