Skip to main content
Log in

Solid-state contributions to densification during liquid-phase sintering

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Densification via liquid-phase sintering generally requires transport of substantial amounts of dissolved solid through the liquid. However, in composite systems, such as W-Cu, solid solubility in the liquid is almost negligible, and densification is hindered by the low amount of total mass transport. In this case, solid-state sintering of the skeletal solid structure in the presence of the liquid is a significant densification mechanism. In this article, the relative contributions to densification of both liquid and solid mass transport mechanisms are considered. A computer simulation is constructed to predict the densification behavior and concurrent microstructural development of liquidphase sintered composites for realistic heating cycles. Governing differential equations for densification are derived from idealized models of the microstructure, considering grain size, diffusion distance from vacancy source to sink, pore size, and pore morphology. Temperature-dependent terms, including the diffusivity, solubility, and surface energy, govern densification and microstructural parameters, such as the grain size, dihedral angle, and contiguity. Predictions for the sintered density, grain size, and contiguity are compared to experimental results for the W-Cu and W-Cu-Ni systems with approximately 20 vol pct liquid. For W-Cu, which has almost no intersolubility, solid-state sintering of W in the presence of liquid Cu is the dominant densification mechanism. Nickel additions increase solid solubility in the liquid and improve typical liquid-phase sintering contributions to densification. Alternatively, high sintered densities can be achieved in the absence of solubility with a sufficiently small particle size due to the solid-state contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Kny: Pro. 12th Int. Plansee Seminar, H. Bildstein and H.M. Ortner eds., Metallwerk Plansee, Reutte, Austria, 1989, vol. 4, pp. 763–72.

    Google Scholar 

  2. W. Neumann and E. Kny: Proc. 12th Int. Plansee Seminar, H. Bildstein and H.M. Ortner, eds., Metallwerk Plansee, Reutte, Austria, 1989, vol. 4, pp. 113–37.

    Google Scholar 

  3. S. Ludvik, S. Clair, R. Kirschmann, and I. Clark: in Advances in Powder Metallurgy, L.F. Pease and R.J. Sansoucy, eds., MPIF, Princeton, NJ, 1991, vol. 2, pp. 225–36.

    Google Scholar 

  4. S. Chai, R. Kirshman, S. Ludvik, J. Bedinger, L. Harmon, R. Burkholder, M. Fallica, S. Tarbox, M. Doherty, J. Oenning, and I. Clark: Proc. 1990 IEEE Int. Microwave Symp., Dallas, TX, May 1990.

  5. J. Oenning and I. Clark: U.S. Patent 4,988,386 Jan. 29, 1991.

  6. C. Zweben: JOM, 1992, vol. 44 (7), pp. 15–23.

    CAS  Google Scholar 

  7. J.L. Johnson and R.M. German: in Advances in Powder Metallurgy, A. Lawley and A. Swanson, eds., Metal Powder Industry Federation, Princeton, NJ, 1993, vol. 4, pp. 201–13.

    Google Scholar 

  8. R.M. German, K.F. Hens, and J.L. Johnson: Int. J. Powder Metall., 1994, vol. 30(1), pp. 91–102.

    Google Scholar 

  9. K.F. Hens, J.L. Johnson, and R.M. German: in Advances in Powder Metallurgy and Particulate Materials, C. Lall and A.J. Neupaver, eds., Metal Powder Industry Federation, Princeton, NJ, 1994, vol. 4, pp. 217–29.

    Google Scholar 

  10. J.L. Johnson, K.F. Hens, and R.M. German: in Tungsten and Refractory Metals—1994, Animesh Bose and Robert J. Dowding, eds., Metal Powder Industry Federation, Princeton, NJ, 1995, pp. 246–52.

    Google Scholar 

  11. J.L. Johnson and R.M. German: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 441–50.

    CAS  Google Scholar 

  12. F.V. Lenel: Trans. AIME, 1948, vol. 175, pp. 878–96.

    Google Scholar 

  13. H.S. Cannon and F.V. Lenel: in Plansee Proc., F. Benesovsky, ed., Metallwerk Plansee, Reutte, Austria, 1953, pp. 106–22.

    Google Scholar 

  14. W.D. Kingery: J. Appl. Phys., 1959, vol. 30, pp. 301–06.

    Article  ADS  CAS  Google Scholar 

  15. V.N. Ermenko, Y.V. Naidich, and I.A. Lavrinenko: Liquid Phase Sintering, Consultants Bureau New York, NY, 1970.

    Google Scholar 

  16. R.M. German: Liquid Phase Sintering, Plenum Press, New York, NY, 1985.

    Google Scholar 

  17. W.A. Kaysser, M. Zivcovic, and G. Petzow: J. Mater. Sci., 1985, vol. 20, pp. 578–84.

    Article  CAS  Google Scholar 

  18. G.H. Gessinger, H.F. Fischmeister, and H.L. Lukas: Acta. Metall., 1973, vol. 31, pp. 715–24.

    Google Scholar 

  19. G.H. Gessinger, H.F. Fischmeister, and H.L. Lukas: Powder Metall., 1973, vol. 16, pp. 119–27.

    CAS  Google Scholar 

  20. R.L. Coble: J. Am. Cerm. Soc., 1958, vol. 41, pp. 55–62.

    Article  CAS  Google Scholar 

  21. S. Farooq and R.M. German: in Sintering ’87, S. Somiya, M. Shimada, M. Yoshimura, and R. Watanabe, eds., Elsevier Applied Science, London, 1988, vol. 1, pp. 459–64.

    Google Scholar 

  22. W.A. Kaysser and G. Petzow: Powder Metall., 1985, vol. 28, pp. 145–50.

    CAS  Google Scholar 

  23. G.C. Kuczynski: Trans. AIME, 1949, vol. 185, pp. 169–78.

    Google Scholar 

  24. R.M. German: Metall. Trans. A, 1987, vol. 18A, pp. 909–14.

    CAS  Google Scholar 

  25. S. Farooq: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1988.

    Google Scholar 

  26. I.M. Lifshitz and V.V. Slyzonov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  27. C. Wagner: Z. Electrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  28. P.W. Vorhees and M.E. Glicksman: Metall. Trans. A, 1984, vol. 15A, pp. 1081–88.

    Google Scholar 

  29. S.C. Yang, S.S. Mani, and R.M. German: J. Met., 1990, vol. 42(4), pp. 16–19.

    CAS  Google Scholar 

  30. H. Fischmeister, A. Kannapan, and Lai-Y.: Phys. Sintering, 1969, vol. 1 (1), pp. G.1-G.13.

    Google Scholar 

  31. A. Belhadjhamida and R.M. German: in Tungsten and Tungsten Alloys, A. Crowson and E.S. Chen, eds., TMS, Warrendale, PA, 1991, pp. 21–26.

    Google Scholar 

  32. J.L. Johnson: Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1994.

    Google Scholar 

  33. V.V. Panichkina, M.M. Sirotyuk, and V.V. Skorokhod: Sov. Powder Met. Metall. Ceram., 1982, vol. 21, pp. 447–50.

    Article  Google Scholar 

  34. V.N. Ermenko, R.V. Minakova, and M.M. Churakov: Sov. Powder Met. Metall. Ceram., 1976, vol. 15, pp. 285–86.

    Google Scholar 

  35. R.M. German: Metall. Trans. A, 1985, vol. 16A, pp. 1247–52.

    CAS  Google Scholar 

  36. N.M. Parikh and M. Humenik: J. Am. Ceram. Soc., 1957, vol. 40, pp. 315–20.

    Article  CAS  Google Scholar 

  37. E.G. Zukas, P.S.Z. Rogers, and R.S. Rogers: Z. Metallkd., 1976, vol. 67, pp. 591–595.32.

    CAS  Google Scholar 

  38. N.K. Prokushev and V.P. Smirnov: Sov. Powder Met. Metall. Ceram., 1986, vol. 25, pp. 727–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J.L., German, R.M. Solid-state contributions to densification during liquid-phase sintering. Metall Mater Trans B 27, 901–909 (1996). https://doi.org/10.1007/s11663-996-0003-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-996-0003-1

Keywords

Navigation