Skip to main content
Log in

A three-dimensional model of the spray forming method

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A three-dimensional model has been formulated to calculate the shape of the general preform, using vector calculus. The shape of a rod, tube, plate, or irregular preform can be calculated at given spray forming conditions. The shape of a spray-formed rod was analyzed at various spray forming conditions using the three-dimensional model. The effects of spray forming parameters, such as spray distribution parameters, angular velocity of rotation, withdrawal velocity, spray angle, and eccentric distance on rod shape, were analyzed. The most important parameters affecting the shape of rods are the spray distribution parameters and the withdrawal velocity. The dynamic evolution of rod shape with a stepwise variation of the withdrawal velocity during spray forming was investigated. The effect of a stepwise change of the withdrawal velocity was the same as that of the scanning atomizer. The calculated surface profiles were compared with those of spray-formed 7075 aluminum alloy rods prepared on a pilot scale. The calculated results for the surface profiles were in agreement with those of the spray-formed rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Grant, B. Cantor, and L. Katgerman: Acta Metall., 1993, vol. 41, pp. 3097–3108.

    Article  CAS  Google Scholar 

  2. P.S. Grant, B. Cantor, and L. Katgerman: Acta Metall., 1993, vol. 41, pp. 3109–18.

    Article  CAS  Google Scholar 

  3. Eon-Sik Lee and S. Ahn: Acta Metall., 1994, vol. 42, pp. 3231–43.

    Article  CAS  Google Scholar 

  4. Z. Zhang, Y. Wu, and E.J. Larvenia: Acta Metall., 1994, vol. 42, pp. 2955–71.

    Article  CAS  Google Scholar 

  5. X. Liang and E.J. Lavernia: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2341–55.

    CAS  Google Scholar 

  6. G. Trapaga, E.F. Matthys, J.J. Valencia, and J. Szekely: Metall. Trans. B, 1992, vol. 23B, pp. 701–18.

    CAS  Google Scholar 

  7. C. San Marchi, H. Liu, E.J. Larvenia, and R.H. Rangel: J. Mater. Sci., 1993, vol. 28, pp. 3313–21.

    Article  CAS  Google Scholar 

  8. T. Bennett and D. Poulikakos: J. Mater. Sci., 1994, vol. 29, pp. 2025–39.

    Article  CAS  Google Scholar 

  9. Gerardo Trapaga and Julian Szekely: Metall. Trans. B, 1991, vol. 22B, pp. 901–14.

    CAS  Google Scholar 

  10. P. Mathur, D. Apelian, and A. Lawley: Acta Metall., 1989, vol. 37, pp. 429–43.

    Article  CAS  Google Scholar 

  11. S. Annavarapu, D. Apelian, and A. Lawley: Metall. Trans. A, 1990, vol. 21A, pp. 3237–56.

    CAS  Google Scholar 

  12. H.K. Seok, D.H. Yeo, K.H. Oh, H.Y. Ra, D.S. Shin, and H.I. Lee: Proc. 3rd Int. Conf. on Spray Forming, Wales, United Kingdom, 1996, pp. 287–95.

    Google Scholar 

  13. I.A. Frigaard: Siam J. Appl. Math, 1995, vol. 55, pp. 1161–1203.

    Article  Google Scholar 

  14. P. Mathur, S. Annavarapu, D. Apelian, and A. Lawley: Mater. Sci. Eng., 1991, vol. A142, pp. 261–76.

    CAS  Google Scholar 

  15. M. Muhamad, J.O. Medwell, and D.T. Gethin: Powder Metall., 1995, vol. 38, pp. 214–20.

    CAS  Google Scholar 

  16. H.C. Lee, H.Y. Ra, K.H. Oh, and S.K. Kim: J. Kor. Inst. Met. Mater., 1992, vol. 30, pp. 1063–70.

    CAS  Google Scholar 

  17. A. Watt: Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley, Reading, MA, 1989, pp. 104–10.

    Google Scholar 

  18. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publication, Aedermannsdorf, Switzerland, 1989, pp. 184–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seok, HK., Oh, K.H., Ra, H.Y. et al. A three-dimensional model of the spray forming method. Metall Mater Trans B 29, 699–708 (1998). https://doi.org/10.1007/s11663-998-0105-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0105-z

Keywords

Navigation