Skip to main content
Log in

A mathematical model of the heat and fluid flows in direct-chill casting of aluminum sheet ingots and billets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Flood, L. Katgerman, A.H. Langille, S. Rogers, and C.M. Read: Light Met., TMS, Warrendale, PA, 1989, pp. 943–47.

    Google Scholar 

  2. S.C. Flood, L. Katgerman, and V.R. Voller: in Modelling of Casting, Welding and Advanced Solidification Processes—V, M. Rappaz, M.R. Özgü, and K.W. Mahin, eds., TMS, Warrendale, PA, 1991, pp. 683–90.

    Google Scholar 

  3. C. Raffourt, Y. Fautrelle, J.L. Meyer, and B. Hannart: in Modelling of Casting, Welding and Advanced Solidification Processes—V, M. Rappaz, M.R. Özgü, and K.W. Mahin, eds., TMS, Warrendale, PA, 1991, pp. 691–98.

    Google Scholar 

  4. C. Devadas and J.F. Grandfield: Light Metals, TMS, Warrendale, PA, 1991, pp. 883–92.

    Google Scholar 

  5. G.U. Grün, I. Eick, and D. Vogelsang: Light Met., TMS, Warrendale, PA, 1994, pp. 863–69.

    Google Scholar 

  6. A.V. Reddy and C. Beckermann: in Materials Processing in the Computer Age II, V.R. Voller, S.P. Marsh, and N. El-Kaddah, eds., TMS, Warrendale, PA, 1994, pp. 89–102.

    Google Scholar 

  7. A. Håkonsen and D. Mortensen: in Modelling of Casting, Welding and Advanced Solidification Processes—VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 763–70.

    Google Scholar 

  8. G.U. Grün and W. Schneider: Light Metals, TMS, Warrendale, PA, 1997, pp. 1059–64.

    Google Scholar 

  9. A. Mo, T. Rusten, and H.J. Thevik: Light Metals, TMS, Warrendale, PA, 1997, pp. 667–74.

    Google Scholar 

  10. A.V. Reddy and C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 479–89.

    CAS  Google Scholar 

  11. B.Q. Li, J.C. Liu, and J.A. Brock: EPD Congr. 1993, J.P. Hager, ed., TMS, Warrendale, PA, 1992, pp. 841–57.

    Google Scholar 

  12. B.Q. Li and P.N. Anyalebechi: Int. J. Heat Mass Transfer, 1995, vol. 38, pp. 2367–81.

    Article  CAS  Google Scholar 

  13. B.R. Henriksen, E.K. Jensen, and D. Mortensen: in Modelling of Casting, Welding and Advanced Solidification Processes—VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 623–30.

    Google Scholar 

  14. L. Maenner, B. Magnin, and Y. Caratini: Light Metals, TMS, Warrendale, PA, 1997, pp. 701–07.

    Google Scholar 

  15. J. Grandfield, K. Goodall, P. Misic, and X. Zhang: Light Metals, TMS, Warrendale, PA, 1997, pp. 1081–90.

    Google Scholar 

  16. W.D. Bennon and F.P. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.

    Article  CAS  Google Scholar 

  17. V.R. Voller and C. Prakash: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  18. B.E. Launder and B.I. Sharma: Lett. Heat Mass Transfer, 1974, vol. 1, pp. 131–38.

    Article  Google Scholar 

  19. M. Lacroix and A. Garon: Num Heat Transfer, Part B, 1992, vol. 19, pp. 57–78.

    Google Scholar 

  20. P.A. Davidson and S.C. Flood: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 293–302.

    CAS  Google Scholar 

  21. J.M. Reese: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 491–99.

    CAS  Google Scholar 

  22. S. Asai and I. Muchi: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 90–98.

    CAS  Google Scholar 

  23. W. Shyy, Y. Pang, G.B. Hunter, D.Y. Wei, and M.H. Chen: J. Eng. Mater. Technol., 1993, vol. 115, pp. 8–16.

    CAS  Google Scholar 

  24. M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 731–44.

    CAS  Google Scholar 

  25. B.E. Launder: J. Heat Transfer, 1988, vol. 110, pp. 1112–28.

    CAS  Google Scholar 

  26. W. Rodi: “Turbulence Models and Their Application in Hydraulics—a State of the Art Review,” IAHR, Delft, The Netherlands, June 1980.

    Google Scholar 

  27. S. Murakami, S. Kato, T. Chikamoto, D. Laurence, and D. Blay: Int. J. Heat Mass Transfer, 1996, vol. 39, pp. 3483–96.

    Article  CAS  Google Scholar 

  28. A.A. Mohamad and R. Viskanta: Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 2815–26.

    Article  CAS  Google Scholar 

  29. Y. Langsrud, A.L. Dons, E.K. Jensen, and S. Brusethaug: Proc. 3rd Int. Conf. on Aluminum Alloys, Their Physical and Mechanical Properties, Trondheim, Norway, 1992, L. Arnberg, O. Lohne, E. Nes, and N. Ryum, eds., NTH-SINTEF, vol. I, pp. 15–20.

  30. VDI-Wärmeatlas, 4. Auflage, VDI Verlag GmbH, Düsseldorf, 1984.

  31. B.R. Henriksen and E.K. Jensen: Light Met., 1993, pp. 969–77.

  32. A. Mo, T.E. Johnsen, B.R. Henriksen, E.K. Jensen, and O.R. Myhr: Light Met., 1994, pp. 879–87.

  33. K. Stephan and M. Abdelsalam: Int. J. Heat Mass Transfer, 1980, vol. 23, pp. 73–87.

    Article  CAS  Google Scholar 

  34. W.R. Gambill: Nucl. Safety, 1968, vol. 9, pp. 467–80.

    Google Scholar 

  35. T.D. Bui and V.K. Dhir: J. Heat Transfer, 1985, vol. 107, pp. 756–63.

    Article  CAS  Google Scholar 

  36. W.M. Rohsenow and J.P. Hartnett: Handbook of Heat Transfer, McGraw-Hill, New York, NY, 1973.

    Google Scholar 

  37. O. Krischer: Chemie-Ing.-Technol., 1961, vol. 33.

  38. H.G. Fjær and E.K. Jensen: Light Met., TMS, Warrendale, PA, 1995, pp. 951–59.

    Google Scholar 

  39. E.K. Jensen and W. Schneider: Light Met., 1995, pp. 969–78.

  40. I. Celik and W. Rodi: PCH Physico Chemical Hydrodynamics, 1984, vol. 5, pp. 217–27.

    CAS  Google Scholar 

  41. N. Brooks and J.R. Hughes: Comp. Meth. Appl. Mech. Eng., 1982, vol. 32, pp. 199–259.

    Article  Google Scholar 

  42. A.J. Chorin: Math. Comput., 1968, vol. 22, pp. 745–62.

    Article  Google Scholar 

  43. J. Zhu and J. Sethian: J. Comput. Phys., 1992, vol. 102, pp. 128–38.

    Article  Google Scholar 

  44. D.M. Hawken, H.R. Tamaddon-Jahromi, P. Townsend, and M.F. Webster: Int. J. Num. Methods Fluids, 1990, vol. 10, pp. 327–51.

    Article  Google Scholar 

  45. B. Ramaswamy, T.C. Jue, and J.E. Akin: Int. J. Num. Methods Eng., 1992, vol. 34, pp. 675–96.

    Article  Google Scholar 

  46. O.C. Zienkiewicz and J. Wu: Int. J. Num. Methods Eng., 1991, vol. 32, pp. 1189–1203.

    Article  Google Scholar 

  47. J.B. Perot: J. Comput. Phys. 1993, vol. 108, pp. 51–58.

    Article  Google Scholar 

  48. J. Donea: Appl. Mech. Rev., 1991, vol. 44, pp. 205–14.

    Article  Google Scholar 

  49. O.C. Zienkiewicz and R.L. Taylor: The Finite Element Method, McGraw-Hill New York, NY, 1991, vol. 2, pp. 320–23.

    Google Scholar 

  50. D.S. Kershaw: J. Comp. Phys., 1978, vol. 26, pp. 43–65.

    Article  Google Scholar 

  51. J.S. Hsiao and B.T.F. Chung: J. Heat Transfer, 1986, vol. 108, pp. 462–64.

    Google Scholar 

  52. G. Amiez and P.-A. Gremaud: Num. Math., 1991, vol. 59, pp. 71–89.

    Article  Google Scholar 

  53. E.K. Jensen and W. Schneider: Light Met., 1995, pp. 961–67.

  54. H.G. Fjær and A. Mo: Metall. Trans., B 1990, vol. 21B, pp. 1049–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, D. A mathematical model of the heat and fluid flows in direct-chill casting of aluminum sheet ingots and billets. Metall Mater Trans B 30, 119–133 (1999). https://doi.org/10.1007/s11663-999-0012-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0012-y

Keywords

Navigation