Skip to main content
Log in

Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M.B. Losz and K.D. Challenger: Recent Trends in Welding Science and Technology, S.A. David and J.M. Vitek, eds., ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 229–35.

    Google Scholar 

  2. D.G. Howden, L. Zhang, R.S. Green, K. Smapath, J.H. Devletian, and D. Singh: International Trends in Welding Science and Technology, S.A. David and J.M. Vitek, eds, ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 359–64.

    Google Scholar 

  3. R.P. Martukanitz, P.R. Howell, and W.A. Pratt: International Trends in Welding Science and Technology, S.A. David and J.M. Vitek, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 271–79.

    Google Scholar 

  4. R.W. Fonda, G. Spanos, and R.A. Vandermeer: in Trends in Welding Research, H.B. Smartt, J.A. Johnson, and S.A. David, eds., ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 277–82.

    Google Scholar 

  5. H. Davis: Ph.D. Thesis, University of Adelaide, Adelaide, Australia, September, 1995.

    Google Scholar 

  6. W. Pitscheneder, T. DebRoy, K. Mundra, and R. Ebner: Weld. J., 1996, vol. 75 (3), pp. 71s-80s.

    Google Scholar 

  7. K. Mundra, T. DebRoy, and K. Kelkar: Numerical Heat Transfer, 1996, vol. 29, pp. 115–29.

    CAS  Google Scholar 

  8. R.T.C. Choo, J. Szekely, and S.A. David: Metall. Trans. B, 1992, vol. 23B, pp. 371–84.

    CAS  Google Scholar 

  9. S. Kou and Y.H. Wang: Metall. Trans. A, 1986, vol. 17A, pp. 2265–70.

    CAS  Google Scholar 

  10. C. Chan, J. Mazumder, and M.M. Chen: Metall. Trans. A, 1984, vol. 15A, pp. 2175–84.

    CAS  Google Scholar 

  11. T. DebRoy and S.A. David: Rev. Modern Phys., 1995, vol. 67 (1), pp. 85–112.

    Article  CAS  Google Scholar 

  12. T. Zacharia, S.A. David, J.M. Vilek, and T. DebRoy: Weld. J., 1989, vol. 68 (12), pp. 499s-509s.

    Google Scholar 

  13. K. Mundra, T. DebRoy, T. Zacharia, and S.A. David: Weld. J., 1992, vol. 71 (9), pp. 313s-320s.

    Google Scholar 

  14. K. Mundra, J.M. Blackburn, and T. DebRoy: Sci. Technol. Welding Joining, 1997, vol. 2 (4), pp. 174–84.

    CAS  Google Scholar 

  15. A. Block-Bolten and T.W. Eager: Metall. Trans. B, 1984, vol. 15B, pp. 461–69.

    CAS  Google Scholar 

  16. P.A.A. Khan and T. DebRoy: Metall. Trans. B, 1984, vol. 15B, pp. 641–44.

    Google Scholar 

  17. K. Mundra and T. DebRoy: Weld. J., 1993, vol. 72 (1), pp. 1s-9s.

    Google Scholar 

  18. K. Mundra, T. DebRoy, S.S. Babu, and S.A. David: Weld. J., 1997, vol. 76 (4), pp. 163s-171s.

    Google Scholar 

  19. Z. Yang and T. DebRoy: Sci. Technol. Welding Joining, 1997, vol. 2 (2), pp. 53–58.

    CAS  Google Scholar 

  20. T. Hong, W. Pitscheneder, and T. DebRoy: Sci. Technol. Welding Joining, 1998, vol. 3 (1), pp. 33–41.

    CAS  Google Scholar 

  21. M. Malinowski-Brodnicka, G. denOuden, and W.J.P. Vink: Weld. J., 1990, vol. 69, pp. 52s-59s.

    CAS  Google Scholar 

  22. R.T.C. Choo and J. Szekely: Weld. J., 1994, vol. 73 (2), pp. 25s-31s.

    Google Scholar 

  23. K. Hong, D.C. Weckman, and A.B. Strong: in Trends in Welding Research, H.B. Smartt, J.A. Johnson, and S.A. David, eds., ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 399–404.

    Google Scholar 

  24. H.K.D.H. Bhadeshia: in Mathematical Modeling of Weld Phenomena, H. Cerjak and K.E. Easterling, eds., Institute of Materials, London, 1993, pp. 109–80.

    Google Scholar 

  25. H.K.D.H. Bhadeshia: Metal Science, 1982, vol. 16(3), pp. 159–65.

    Article  CAS  Google Scholar 

  26. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, NY, 1980.

    Google Scholar 

  27. B.E. Launder and B.D. Spalding: Mathematical Models of Turbulence, Academic Press, New York, NY, 1972.

    Google Scholar 

  28. W.M. Pun and D.B. Spalding: Heat Transfer Section Report No. HTS/76/2, Imperial College, London, 1976.

    Google Scholar 

  29. ILLUSTRATIVE ADAPTATIONS of COMPACT-3D Version 3.1, a general-purpose computer program for three-dimensional fluid flow and heat transfer, Innovative Research Inc., Minneapolis, MN, 1993, p. 14–2.

  30. D.N. Shackleton and W. Lucas: Weld. J., 1974, vol. 53 (12), pp. 537s-547s.

    Google Scholar 

  31. W.G. Essers and R. Walter: Weld. J., 1981, vol. 60 (2), pp. 37s-42s.

    Google Scholar 

  32. J.F. Lancaster: The Physics of Welding, Pergamon Press, New York, NY, 1984.

    Google Scholar 

  33. S. Kumar and S.C. Bhaduri: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 435–41.

    Google Scholar 

  34. L.A. Jones, T.W. Eagar, and J.H. Lang: Weld. J., 1998, vol. 77 (4), pp. 135s-141s.

    Google Scholar 

  35. G.W. Tichellar, G. Jelmorini, and G.J.P.M. vander Henvel: Droplet Temperature Measurement in Arc Welding, IIW Document 212-411-77, International Institute of Welding, France, 1977.

    Google Scholar 

  36. L.-E. Svensson, B. Gretoft, and H.K.D.H. Bhadeshia: Scand. J. Metall., 1986, vol. 15, pp. 97–103.

    CAS  Google Scholar 

  37. H.K.D.H. Bhadeshia, L.E. Svensson, and B. Gretoft: Acta Metall., 1985, vol. 33, pp. 1271–83.

    Article  CAS  Google Scholar 

  38. M. Takahashi and H.K.D.H. Bhadeshia: Mater. Trans., 1991, vol. 32 (8), pp. 689–96.

    CAS  Google Scholar 

  39. A.D. Wilson, E.G. Hamburg, D.J. Colvin, S.W. Thompson, and Y. Krauss: Proc. Microalloying 88, World Materials Congress, ASM INTERNATIONAL, Materials Park, OH, 1988, pp. 259–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Debroy, T. Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel. Metall Mater Trans B 30, 483–493 (1999). https://doi.org/10.1007/s11663-999-0082-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0082-x

Keywords

Navigation