Skip to main content

Advertisement

Log in

Transfer of semiconductor and oxide films by wafer bonding and layer cutting

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Material integration by wafer bonding and layer transfer is one of the main approaches to increase functionality of semiconductor devices and to enhance integrated circuits (IC) performance. Even though most mismatches such as different lattice constants betweeen bonding materials present no obstacle for wafer direct bonding, thermal stresses caused by thermal mismatches must be minimized by low temperature bonding to avoid debonding, sliding or cracking. In order to achieve a strong bond at low temperatures, two approaches may be adopted: 1) Bonding at room temperature by hydrogen bonding of OH, NH, or FH terminated surfaces followed by polymerization to form covalent bonds. Within this approach the key is to remove the by-products of the reaction at the bonding interface. 2) Direct formation of a covalent bond between clean surfaces without adsorbents in ultra high vacuum conditions. Low temperature bonding allows bonding processed wafers for technology integration. Layer transfer requires uniform thinning of one wafer of a bonded pair. The most promising technology involves a buried embrittled region by hydrogen implantation. A layer with a thickness corresponding to the hydrogen implantation depth is then transferred onto a bonded desired substrate by either splitting due to internal gas pressure or by forced peeling as long as the bonding energy is higher than the fracture energy in the embrittled region at the layer transfer temperature. This approach is quite generic in nature and may be applied to almost all materials. We have found that B+H co-implantation and/or H implantation at high temperatures can significantly lower the splitting temperature. However, the wafer temperature during H implantation has to be within a temperature window that is specific for each material. The experimentally determined temperature windows for some semiconductors and single crystalline oxides will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.-Y. Tong and U. Gösele, Semicond. Wafer Bonding: Sci. and Technol. (New York: John Wiley & Sons, 1999).

    Google Scholar 

  2. M. Bruel, Electron. Lett., 31, 1201 (1995).

    Article  CAS  Google Scholar 

  3. W.G. En, I.J. Malik, M.A. Bryan, S. Farrens, F.J. Henley, N.W. Cheung and C. Chan, Proc. IEEE Int. SOI Conf. P8CH36199, 163 (1998).

  4. W.P. Maszara, B.-L. Jiang, A. Yamada, G.A. Rozgoni, H. Baumgart, and A.J.R. De Kock, J. Appl. Phys., 69, 257 (1991).

    Article  CAS  Google Scholar 

  5. Q.-Y. Tong and U. Gösele, J. Electrochem. Soc. 142, 3975 (1995).

    Article  CAS  Google Scholar 

  6. Q.-Y. Tong, Y.-L. Chao, L.J. Huang, and U. Gösele, Electron. Lett. 35, 341 (1999).

    Article  CAS  Google Scholar 

  7. U. Gösele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad, and K. Scheerschmidt, Appl. Phys. Lett. 67, 3614 (1995).

    Article  Google Scholar 

  8. H. Takagi, R. Maeda, N. Hosoda, and T. Suga, Appl. Phys. Lett. 74, 2387 (1999).

    Article  CAS  Google Scholar 

  9. M. Bruel, B. Aspar, C. Maleville, H. Moriceay, A.J. Auberton-Herve, and T. Barge, Proc. 8th Intl. Symp. Silicon-on-Insulator Technol. & Devices (New York: The Electrochem. Soc., 1997), p. 3.

    Google Scholar 

  10. L.B. Freund, Appl. Phys. Lett. 70, 3519 (1997).

    Article  CAS  Google Scholar 

  11. L.J. Huang, Q.-Y. Tong, T.-H. Lee, Y.-L. Chao, and U. Gösele, 8th Intl. Symp. Si. Mater. Sci. and Technol. 98-1, 1341 (1998).

    Google Scholar 

  12. Q.-Y. Tong, R. Scholz, U. Gösele, T.-H. Lee, L.-J. Huang, Y.-L. Chao, and T.Y. Tan, Appl. Phys. Lett. 72, 49 (1998).

    Article  CAS  Google Scholar 

  13. Q.-Y. Tong, T.H. Lee, L-J. Huang, Y.-L. Chao, and U. Gösele, Electron. Lett. 34, 407 (1998).

    Article  CAS  Google Scholar 

  14. Q.-Y. Tong and R. Bower, MRS Bulletin 23, 40 (1998).

    CAS  Google Scholar 

  15. J.T. Borenstein, J.W. Corbett, and S.J. Pearton, J. Appl. Phys. 73, 2751 (1993).

    Article  CAS  Google Scholar 

  16. J.I. Pankove, P.J. Zanzucchi, C.W. Magee, and G. Lucovsky, Appl. Phys. Lett. 46, 421 (1985).

    Article  CAS  Google Scholar 

  17. K. Sakaguchi, K. Yanagita, H. Kurisu, H. Suzuki, K. Ohmi, and T. Yonehara, Proc. 1999 IEEE Int. SOI Conf. 99CH36345, 110 (1999)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, QY., Huang, LJ. & Gösele, U.M. Transfer of semiconductor and oxide films by wafer bonding and layer cutting. J. Electron. Mater. 29, 928–933 (2000). https://doi.org/10.1007/s11664-000-0183-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0183-4

Key words

Navigation