Skip to main content
Log in

Low-temperature activation of As in Hg1−xCdxTe(211) grown on Si by molecular beam epitaxy

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The HgCdTe infrared detectors and test structures based on dual or multicolor HgCdTe are desirable for various applications. It is important to control both p-and n-type extrinsic doping in these photovoltaic structures. This paper addresses the issue of activating arsenic as a p-type dopant at temperatures sufficiently low that they will not compromise the integrity of p-n junctions. Midwavelength infrared (MWIR) HgCdTe epilayers were grown by molecular beam epitaxy (MBE) using an In-free type of mounting. The doping was performed by coevaporating arsenic from an elemental solid source during the growth. During postgrowth treatments, we employed a two-step annealing process. During both steps, we used temperatures (300°C, 275°C, and 250°C) that are well below the current standard annealing temperatures. The results suggest that the energy barrier for As transfer from Hg to Te sites can be overcome at 250°C; hence, p doping can be achieved at the temperature of 250°C. The temperature-dependent Hall effect characteristics of the grown samples were measured by the van der Pauw technique with magnetic fields up to 0.4 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Boukerche, P.S. Wijewarnasuriya, S. Sivananthan, I.K. Sou, Y.J. Kim, K.K. Mahavadi, and J.P. Faurie, J. Vac. Sci. Technol. A6, 2830 (1988).

    Google Scholar 

  2. P.S. Wijewarnasuriya, M.D. Lange, S. Sivananthan, and J.P. Faurie, J. Appl. Phys. 75, 1005 (1994).

    Article  CAS  Google Scholar 

  3. P.S. Wijewarnasuriya, I.K. Sou, J. Jim, K.K. Mahavadi, S. Sivananthan, M. Boukerche, and J.P. Faurie, Appl. Phys. Lett. 51, 2045 (1987).

    Article  Google Scholar 

  4. M.L. Wroge, D.J. Peterman, B.J. Morris, D.J. Leopold, J.G. Broerman, and B.J. Feldman, J. Vac. Sci. Technol. A6, 2826 (1988).

    Google Scholar 

  5. M. Brown and A.F.W. Willoughby, J. Cryst. Growth 59, 27 (1982).

    Article  CAS  Google Scholar 

  6. T.C. Harman, J. Electron. Mater. 8, 191 (1989).

    Google Scholar 

  7. M.H. Kalisher, J. Cryst. Growth 70, 365 (1984).

    Article  CAS  Google Scholar 

  8. T. Tung, J. Cryst. Growth 86, 161 (1988).

    Article  CAS  Google Scholar 

  9. H.R. Vydyanath, J.A. Ellsworth, and C.M. Devaney, J. Electron. Mater. 16, 13 (1987).

    CAS  Google Scholar 

  10. M.A. Berding and A. Sher, Appl. Phys. Lett. 74, 685 (1999).

    Article  CAS  Google Scholar 

  11. C.H. Grein, J.W. Garland, S. Sivananthan, P.S. Wijewarnasuriya, F. Aqariden, and M. Fuchs, J. Electron. Mater. 28, 789 (1999).

    Article  CAS  Google Scholar 

  12. M.A. Berding, A. Sher, M. Vanschlifgaarde, and A.C. Chen, J. Electron. Mater. 27, 605 (1998).

    Article  CAS  Google Scholar 

  13. P. Boieriu, G. Brill, Y. Chen, s. Velicu, and N.K. Dhar, Proc. SPIE 4454, 60 (2001).

    Article  CAS  Google Scholar 

  14. Y. Selamet, G. Badano, C.H. Grein, P. Boieriu, V. Nathan, and S. Sivananthan, Proc. SPIE 4454, 71 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boieriu, P., Chen, Y. & Nathan, V. Low-temperature activation of As in Hg1−xCdxTe(211) grown on Si by molecular beam epitaxy. J. Electron. Mater. 31, 694–698 (2002). https://doi.org/10.1007/s11664-002-0221-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0221-5

Key words

Navigation