Skip to main content
Log in

GaN and other materials for semiconductor spintronics

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Existing semiconductor electronic and photonic devices use the charge on electrons and holes to perform their specific functionality, such as signal processing or light emission. The field of semiconductor spintronics seeks to exploit the spin of charge carriers in new generations of transistors, lasers, and integrated magnetic sensors. The use of such devices depends on the availability of materials with practical magnetic-ordering temperatures. Here, we summarize recent progress in the development of GaN and other wide bandgap semiconductors that retain ferromagnetic properties above room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).

    Article  CAS  Google Scholar 

  2. A. Oiwa, Y. Mitsumori, R. Moriya, T. Slupinski, and H. Munekata, Phys. Rev. Lett. 88, 137202-1 (2002).

    Google Scholar 

  3. Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, A. Wilson, G. Spanos, and B.T. Jonker, Science 295, 651 (2002).

    Article  CAS  Google Scholar 

  4. H. Ohno, J. Vac. Sci. Technol. B18, 2039 (2000).

    Google Scholar 

  5. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  6. S. Von Molnar, M. Roukes, R.A. Buhrman, D.D. Awschalom, and J. Daughton, “World Technology (WTEC) Study on Spin Electronics: Highlights of Recent US Research and Development Activities,” http://www.wtec.org/spin_US_summary.pdf (2001).

  7. S.A. Chambers, Mater. Today 2, 34 (2002).

    Article  Google Scholar 

  8. S. Das Sarma, Am. Scientist 89, 516 (2001).

    Article  Google Scholar 

  9. H. Ohno, F. Matsukura, and Y. Ohno, JSAP Int. 5, 4 (2002).

    CAS  Google Scholar 

  10. D.D. Awschalom and J.M. Kikkawa, Science 287, 473 (2000).

    Article  Google Scholar 

  11. P.R. Hammar, B.R. Bennett, S. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).

    Article  CAS  Google Scholar 

  12. G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, and B.J. van Wees, Phys. Rev. B 62, R4793 (2000).

  13. E.I. Rashba, Phys. Rev. B 62, R16267 (2000).

  14. V.P. LaBella, D.W. Bullock, Z. Ding, C. Emery, A. Venkatesan, W.F. Oliver, P.M. Salamo, P.M. Thibado, and M. Mortazavi, Science 92, 1518 (2001).

    Article  Google Scholar 

  15. A.T. Hanbicki, B.T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).

    Article  CAS  Google Scholar 

  16. Y. Higo, H. Shimizu, and M. Tanaka, Phys. E 10, 292 (2001).

    Article  CAS  Google Scholar 

  17. J. Nitta, C.-M. Hu, A. Jensen, J.B. Hansen, and H. Takayanagi, Phys. E 10, 467 (2001).

    Article  Google Scholar 

  18. M. Johnson, Phys. E 10, 472 (2001); M. Johnson, Semicond. Sci. Technol. 17, 298 (2002).

    Article  Google Scholar 

  19. A.T. Filip, J. Jedema, B.J. van Wees, and G. Borghs, Phys. E 10, 478 (2001).

    Article  CAS  Google Scholar 

  20. G. Schmidt and L.W. Molenkamp, Phys. E 10, 484 (2001); G. Schmidt and L.W. Molenkamp, Semicond. Sci. Technol. 17, 310 (2001).

    Article  CAS  Google Scholar 

  21. Y. Ohno, I. Arata, F. Matsukura, H. Ohno, D.K. Young, B. Beschoten, and D.D. Awschalom, Phys. E 10, 489 (2001).

    Article  CAS  Google Scholar 

  22. F. Holtzberg, S. von Molnar, and J.M.D. Coey, in Handbook on Semiconductors, ed. T. Moss (Amsterdam: North-Holland, 1980), pp. 149–289.

    Google Scholar 

  23. S. von Molnar and D. Read, Proc. IEEE, Journal of Magnetism and Magnetic Materials 13 (2002), pp. 242–245.

    Google Scholar 

  24. J.M.D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  CAS  Google Scholar 

  25. J.M.D. Coey and M. Venkatesan, J. Appl. Phys. 91, 8345 (2002).

    Article  CAS  Google Scholar 

  26. J.J. Versluijs, M.A. Bari, and J.M.D. Coey, Phys. Rev. Lett. 87, 6601 (2001).

    Article  Google Scholar 

  27. J.W. Dong, L.C. Chen, C.J. Palmstrom, R.D. James, and S. McKernan, Appl. Phys. Lett. 75, 1443 (1999).

    Article  CAS  Google Scholar 

  28. J.Q. Xie, J.W. Dong, J. Lu, C.J. Palmstrom, and S. McKernan, Appl. Phys. Lett. 79, 1003 (2001).

    Article  CAS  Google Scholar 

  29. C.T. Tanaka, J. Nowak, and J.S. Moodera, J. Appl. Phys. 86, 6239 (1999).

    Article  CAS  Google Scholar 

  30. H. Akinaga, T. Manago, and M. Shirai, Jpn. J. Appl. Phys. 39, L1118 (2000).

    Google Scholar 

  31. J.H. Zhao, K. Matsukura, K. Takamura, E. Abe, D. Chiba, and H. Ohno, Appl. Phys. Lett. 79, 2776 (2001).

    Article  CAS  Google Scholar 

  32. G.A. Prinz, in Ultrathin Magnetic Structures II, ed. B. Heinrich and J.A.C. Bland (New York: Springer-Verlag, 1994), pp. 1–70.

    Google Scholar 

  33. G.A. Medvedkin, T. Ishibashi, T. Nishi, and K. Hiyata, Jpn. J. Appl. Phys. 39, L949 (2002).

    Google Scholar 

  34. S. Cho et al., Phys. Rev. Lett. 88, 257203–1 (2002).

    Article  Google Scholar 

  35. G.A. Medvedkin, K. Hirose, T. Ishibashi, T. Nishi, V.G. Voevodin, and K. Sato, J. Cryst. Growth 236, 609 (2002).

    Article  CAS  Google Scholar 

  36. S. Choi, G.-B. Cha, S.C. Hong, S. Cho, Y. Kim, J.B. Kellerson, S.-Y. Jeong, and G.C. Yi, Solid-State Commun. 122, 165 (2002).

    Article  CAS  Google Scholar 

  37. K. Ueda, H. Tahata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

    Article  CAS  Google Scholar 

  38. Y. Matsumoto, M. Murahami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshikara, and H. Koinuma, Science 291, 854 (2001).

    Article  CAS  Google Scholar 

  39. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  40. C. Zener, Phys. Rev. B 81, 440 (1951).

    Article  CAS  Google Scholar 

  41. M. Van Schilfgaarde and O.N. Myrasov, Phys. Rev. B 63, 233205–1 (2001).

    Article  Google Scholar 

  42. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205–1 (2001).

    Article  Google Scholar 

  43. T. Dietl, J. Appl. Phys. 89, 7437 (2001).

    Article  CAS  Google Scholar 

  44. T. Jungwirth, W.A. Atkinson, B.H. Lee, and A.H. MacDonald, Phys. Rev. B 59, 9818 (1999).

    Article  CAS  Google Scholar 

  45. M. Berciu and R.N. Bhatt, Phys. Rev. Lett. 87, 108203–1 (2001).

    Article  Google Scholar 

  46. R.N. Bhatt, M. Berciu, M.D. Kennett, and X.J. Wan, J. Supercond.: Incorp. Novel Magn. 15, 71 (2002).

    Article  CAS  Google Scholar 

  47. V.I. Litvinov and V.K. Dugnev, Phys. Rev. Lett. 86, 5593 (2001).

    Article  CAS  Google Scholar 

  48. J. Konig, H.H. Lin, and A.H. MacDonald, Phys. Rev. Lett. 84, 5628 (2001).

    Article  Google Scholar 

  49. J. Schliemann, J. Konig, and A.H. MacDonald, Phys. Rev. B 64, 165201 (2001).

    Article  Google Scholar 

  50. T. Jungwirth, J. Konig, J. Sinova, J. Kucera, and A.H. MacDonald, Curie Temperature Trends in (III,Mn)V Ferromagnetic Semiconductors (in press).

  51. C.R. Abernathy, Mater. Sci. Rep. R16, 203 (1995).

    Google Scholar 

  52. R.Y. Korortiev, J.M. Gregie, and B.W. Wessels, Appl. Phys. Lett. 80, 1731 (2002).

    Article  Google Scholar 

  53. H. Katayama-Yoshida, R. Kato, and T.J. Yamamoto, J. Cryst. Growth 231, 438 (2001).

    Article  Google Scholar 

  54. I.D. Goepfert, E.F. Schubert, A. Osinsky, P.E. Norris, and N.N. Faleev, J. Appl. Phys. 88, 2030 (2000).

    Article  CAS  Google Scholar 

  55. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, L485 (2001).

    Google Scholar 

  56. S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, and H.J. Hori, J. Cryst. Growth 237–239, 1358 (2002).

    Article  Google Scholar 

  57. G.T. Thaler et al., Appl. Phys. Lett. 80, 3964 (2002).

    Article  CAS  Google Scholar 

  58. M.E. Overberg, C.R. Abernathy, S.J. Pearton, N.A. Theodoropoulou, K.T. McCarthy, and A.F. Hebard, Appl. Phys. Lett. 79, 1312 (2001).

    Article  CAS  Google Scholar 

  59. S. Sasaki, S. Sonoda, Y. Yamamoto, K. Suga, S. Shimizu, K. Kindo, and H. Hori, J. Appl. Phys. 91, 7911 (2002).

    Article  CAS  Google Scholar 

  60. Y. Sato, D. Okazawa, A. Nagashima, and J. Yoshino, Physica E 10, 196 (2001).

    Article  Google Scholar 

  61. A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A.S. van Steenbergen, P.J. Wellman, B. Grietens, R. Bogaerts, F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).

    Article  Google Scholar 

  62. K.M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J.K. Furdyna, Phys. Rev. B 65, 201303–1 (2002).

    Article  Google Scholar 

  63. M.L. Reed, N.A. El-Masry, H.H. Stadelmaier, M.E. Ritums, N.J. Reed, C.A. Parker, J.C. Roberts, and S.M. Bedair, Appl. Phys. Lett. 79, 3473 (2001).

    Article  CAS  Google Scholar 

  64. N.A. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Appl. Phys. Lett. 78, 3475 (2001).

    Article  CAS  Google Scholar 

  65. N.A. Theodoropoulou, A.F. Hebard, S.N.G. Chu, M.E. Overberg, C.R. Abernathy, S.J. Pearton, R.G. Wilson, and J.M. Zavada, Appl. Phys. Lett. 79, 3452 (2001).

    Article  CAS  Google Scholar 

  66. S.J. Pearton et al., J. Vac. Sci. Technol. A20, 583 (2002).

    Google Scholar 

  67. H. Akinaga, S. Nemeth, J. De Boeck, L. Nistor, H. Bender, G. Borghs, H. Ofuchi, and M. Oshima, Appl. Phys. Lett. 77, 4377 (2000).

    Article  CAS  Google Scholar 

  68. M. Hashimoto, Y.-Z. Zhou, M. Kanamura, and H. Asahi, Solid-State Commun. 122, 37 (2002).

    Article  CAS  Google Scholar 

  69. S.E. Park, H.-J. Lee, Y.C. Cho, S.-Y. Jeong, C.R. Cho, and S. Cho, Appl. Phys. Lett. 80, 4187 (2002).

    Article  CAS  Google Scholar 

  70. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Phys. Rev. Lett. 89, 107203 (2002).

    Article  CAS  Google Scholar 

  71. M.E. Overberg, J. Vac. Sci. Technol. B 20, 969 (2002).

    Article  CAS  Google Scholar 

  72. S.J. Pearton et al., Appl. Phys. 92, 2047 (2002).

    Article  CAS  Google Scholar 

  73. R. Fiederling, M. Kein, G. Resescher, W. Ossau, G. Schmidt, W. Wang, and L.W. Molenkamp, Nature 402, 787 (1999).

    Article  Google Scholar 

  74. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom, Nature 402, 790 (1999).

    Article  CAS  Google Scholar 

  75. B.T. Jonker, Y.D. Park, B.R. Bennet, H.D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).

    Article  CAS  Google Scholar 

  76. Y.D. Park, B.T. Jonker, B.R. Bennet, G. Itzkos, M. Furis, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 77, 3989 (2000).

    Article  CAS  Google Scholar 

  77. B.T. Jonker, A.T. Hanbicki, Y.D. Park, G. Itskos, M. Furis, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 79, 3098 (2001).

    Article  CAS  Google Scholar 

  78. P. LeClair, J.K. Ha, H.J.M. Swagten, J.T. Kohlhepp, C.H. van de Vin, and W.J.M. de Jonge, Appl. Phys. Lett. 80, 625 (2002).

    Article  CAS  Google Scholar 

  79. A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88, 247202–1 (2002).

    Article  CAS  Google Scholar 

  80. A.C. Durst, R.N. Bhatt, and P.A. Wolff, Phys. Rev. B. 65, 235205–1 (2002).

    Article  Google Scholar 

  81. M. Tanaka, J.P. Harbison, J. DeBoeck, T. Sands, B. Phillips, T.L. Cheeks, and V.G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993); M. Tanaka, J.P. Harbison, T. Sands, B. Philips, T.L. Cheeks, J. De Boeck, L.T. Florez, and V.G. Keramidas, Appl. Phys. Lett. 63, 696 (1993).

    Article  CAS  Google Scholar 

  82. K. Suzuki, T. Kaneko, H. Yoshida, Y. Obi, H. Fujimori, and H. Morita, J. Alloys Compounds 306, 66 (2000).

    Article  CAS  Google Scholar 

  83. A.F. Giullermet and C. Grimvall, Phys. Rev B. 40, 10582 (1989).

    Article  Google Scholar 

  84. Y. Shapira, N.F. Oliveira, C.C. Becerra, and S. Foner, Transitions of MnP for a field parallel to the hard magnetization direction-a possible new Lifshitz point, Phys. Rev. B 60, 1054 (1972).

    Google Scholar 

  85. K. Inumaru, H. Okamoto, and S.J. Yamanaka, J. Cryst. Growth 237–239, 2050 (2002).

    Article  Google Scholar 

  86. L.M. Corliss, N. Elliott, and J.M. Hastings, Phys. Rev. 117, 929 (1960).

    Article  CAS  Google Scholar 

  87. P.S. Herle, M.S. Hegde, N.Y. Vasathacharya, and J. Philip, J. Solid State Chem. 134, 120 (1997).

    Article  Google Scholar 

  88. K. Suzuki, T. Kaneko, H. Yoshida, H. Morita, and H. Fujimori, J. Alloys Compounds 224, 232 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearton, S.J., Park, Y.D., Abernathy, C.R. et al. GaN and other materials for semiconductor spintronics. J. Electron. Mater. 32, 288–297 (2003). https://doi.org/10.1007/s11664-003-0147-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0147-6

Key words

Navigation