Skip to main content
Log in

SiC field-effect devices operating at high temperature

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Field-effect devices based on SiC metal-oxide-semiconductor (MOS) structures are attractive for electronic and sensing applications above 250°C. The MOS device operation in chemically corrosive, high-temperature environments places stringent demands on the stability of the insulating dielectric and the constituent interfaces within the structure. The primary mode of oxide breakdown under these conditions is attributed to electron injection from the substrate. The reliability of n-type SiC MOS devices was investigated by monitoring the gate-leakage current as a function of temperature. We find current densities below 17 nA/cm2 and 3 nA/cm2 at electric field strengths up to 0.6 MV/cm and temperatures of 330°C and 180°C, respectively. These are promising results for high-temperature operation, because the optimum bias point for SiC MOS gas sensors in near midgap, where the field across the oxide is small. Our results are valid for n-type SiC MOS sensors in general and have been observed in both the 4H and 6H polytypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  2. A.L. Spetz et al., Phys. Status Solidi A 185, 15 (2001).

    Article  CAS  Google Scholar 

  3. P. Tobias, S. Ejakov, B. Golding, and R.N. Ghosh, IEEE Sensors J. 3, 543 (2003).

    Article  CAS  Google Scholar 

  4. L.A. Lipkin and J.W. Palmour, J. Electron. Mater. 25, 909 (1996).

    CAS  Google Scholar 

  5. P. Tobias, B. Golding, and R.N. Ghosh, Proc. Transducers 2003 1, 416 (2003).

    Google Scholar 

  6. Model 90-I-V Characterization System and Model 82-WIN Simultaneous C-V System, Keithley Instruments, Inc., Cleveland, OH.

  7. R.N. Ghosh, P. Tobias, S.G. Ejakov, and B. Golding, Proc. IEEE Sensors 2, (2002).

  8. R.N. Ghosh, P. Tobias and B. Golding, Mater. Res. Soc. Symp. Proc. 742, 363 (2003).

    CAS  Google Scholar 

  9. M.M. Maranowski and J.A. Cooper, Jr., IEEE Trans. Electron. Dev. 46, 520 (1999).

    Article  CAS  Google Scholar 

  10. S. Dimitrijev and P. Jamet, Micro. Reliab. 43, 225 (2003).

    Article  CAS  Google Scholar 

  11. V.V. Afanas’ev, M. Bassler, G. Pensl, and M.J. Schulz, J. Appl. Phys. 79, 3107 (1996).

    Google Scholar 

  12. M.K. Das, Mater. Sci. Forum 457–460, 1275 (2004).

    Article  Google Scholar 

  13. J. Senzaki, M. Goto, K. Kojima, K. Yamabe, and K. Fukuda, Mater. Sci. Forum 457–460, 1269 (2004).

    Google Scholar 

  14. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, L.C. Feldman, and R.A. Weller, Appl. Phys. Lett. 76, 1713 (2000)

    Article  CAS  Google Scholar 

  15. X.W. Wang, Z.J. Luo, and T.P. Ma, IEEE Trans. Electron Dev. 47, 458 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, R.N., Tobias, P. SiC field-effect devices operating at high temperature. J. Electron. Mater. 34, 345–350 (2005). https://doi.org/10.1007/s11664-005-0108-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0108-3

Key words

Navigation