Skip to main content
Log in

Electrical transport properties of single GaN and InN nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The transport properties of single GaN and InN nanowires grown by thermal catalytic chemical vapor deposition were measured as a function of temperature, annealing condition (for GaN) and length/square of radius ratio (for InN). The as-grown GaN nanowires were insulating and exhibited n-type conductivity (n ≈ 2×1017 cm−3, mobility of 30 cm2/V s) after annealing at 700°C. A simple fabrication process for GaN nanowire field-effect transistors on Si substrates was employed to measure the temperature dependence of resistance. The transport was dominated by tunneling in these annealed nanowires. InN nanowires showed resistivity on the order of 4×10−4 Ω cm and the specific contact resistivity for unalloyed Pd/Ti/Pt/Au ohmic contacts was near 1.09×10−7 Ω cm2. For In N nanowires with diameters <100 nm, the total resistance did not increase linearly with length/square of radius ratio but decreased exponentially, presumably due to more pronounced surface effect. The temperature dependence of resistance showed a positive temperature coefficient and a functional form characteristic of metallic conduction in the InN nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  2. B.F. Erlanger, B.X. Chen, M. Zhu, and L. Brus, Nano Lett. 1, 465 (2002).

    Article  CAS  Google Scholar 

  3. X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber, Nature 409, 66 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  4. G.Y. Tseng and J.C. Ellenbogen, Science 294, 1293 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, and C.M. Lieber, Science 294, 1313 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  6. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Y. Cui and C.M. Lieber, Science 291, 851 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  8. J.Y. Yu, S.W. Chung, and J.R. Heath, J. Phys. Chem. B 104, 1864 (2000).

    Google Scholar 

  9. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  10. J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, and R.J. Saykally, Nat. Mater. 1, 106 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. J.Y. Lao, J.G. Wen, and Z.F. Ren, Nano Lett. 2, 1287 (2002).

    Article  CAS  Google Scholar 

  12. W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997).

    Article  CAS  Google Scholar 

  13. X.F. Duan and C.M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).

    Article  CAS  Google Scholar 

  14. C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng, and Y.F. Chen, J. Am. Chem. Soc. 123, 2791 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wand, Z. Zhang, and Z. Qiao, Adv. Mater. 12, 1432 (2000).

    Article  CAS  Google Scholar 

  16. G.S. Cheng, L.D. Zhang, Y. Zhu, G.T. Fei, and L. Li, Appl. Phys. Lett. 75, 2455 (1999).

    Article  CAS  ADS  Google Scholar 

  17. C.C. Tang, S. Fan, H.Y. Dand, P. Li, and Y.M. Liu, Appl. Phys. Lett. 77, 1961 (2000).

    Article  CAS  ADS  Google Scholar 

  18. H.Y. Peng, X.T. Zhou, N. Wang, Y.F. Zheng, L.S. Liao, W.S. Shi, C.S. Lee, and S.T. Lee, Chem. Phys. Lett. 327, 263 (2000).

    Article  CAS  Google Scholar 

  19. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).

    Article  CAS  Google Scholar 

  20. J.-R. Kim, H.M. So, J.W. Park, J.-J. Kim, J. Kim, C.J. Lee, and S.C. Lyu, Appl. Phys. Lett. 80, 3548 (2002).

    Article  CAS  ADS  Google Scholar 

  21. L.C. Chen, K.H. Chen, and C.C. Chen, Nanowires and Nanobelts—Materials, Properties and Devices, Vol. 1: Metal and Semiconductor Nanowires, ed. Z. L. Wang (New York: Kluwer Academic Publishers, 2003), Chap. 9, pp. 257–309.

    Google Scholar 

  22. Z.H. Lan, C.H. Liang, C.W. Hsu, C.T. Wu, H.M. Lin, S. Dhara, K.H. Chen, L.C. Chen, and C.C. Chen, Adv. Funct. Mater. 14, 233 (2004).

    Article  CAS  Google Scholar 

  23. Z.H. Lan, W.M. Wang, C.L. Sun, S.C. Shi, C.W. Hsu, T.T. Chen, K.H. Chen, C.C. Chen, Y.F. Chen, and L.C. Chen, J. Cryst. Growth 269, 87 (2004).

    Article  CAS  Google Scholar 

  24. C.H. Liang, L.C. Chen, J.S. Hwang, K.H. Chen, Y.T. Hung, and Y.F. Chen, Appl. Phys. Lett. 81, 22 (2002).

    Article  CAS  ADS  Google Scholar 

  25. O. Briot, B. Maleyre, S. Ruffenach, C. Pinquier, F. Demangeot, and J. Frandon, Phys. Status Solidi 16 (7), 2851 (2003).

    Google Scholar 

  26. E. Dimakis, G. Konstantinidis, K. Tsagaraki, A. Adikimenakis, E. Iliopoulos, and A. Georgakilas, Superlattices Microstruct. 36, 497 (2004).

    Article  CAS  ADS  Google Scholar 

  27. T. Tang, S. Han, W. Jin, X. Liu, C. Li, D. Zhang, C. Zhou, B. Chen, J. Han, and M. Meyyapan, J. Mater. Res. 19, 423 (2004).

    Article  CAS  Google Scholar 

  28. D.K. Schroder, Semiconductor Material and Device Characterization (New York: Wiley and Sons, 1990).

    Google Scholar 

  29. S.E. Mohney, Y. Wang, M.A. Cabassi, K.K. Lew, S. Dey, J.M. Redwing, and T.S. Mayer, Solid-State Electron. 49, 227 (2005).

    Article  CAS  Google Scholar 

  30. P. Sheng, Phys. Rev. B: Condens. Matter Mater. Phys. 21, 2180 (1980).

    CAS  ADS  Google Scholar 

  31. G. Ouyang, C.X. Wang, and G.W. Yang, Appl. Phys. Lett. 86, 171914 (2005).

    Article  CAS  Google Scholar 

  32. Y.M. Chang, C.T. Chuang, C.T. Chia, K.T. Tsen, H. Lu, and W.J. Schaff, Appl. Phys. Lett. 85, 5224 (2004).

    Article  CAS  ADS  Google Scholar 

  33. See, for example, this review article: A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).

    Article  CAS  ADS  Google Scholar 

  34. Y. Huang, X. Duan, Y. Cui, and C.M. Lieber, Nano Lett. 2, 101 (2002).

    Article  CAS  Google Scholar 

  35. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, Nano Lett. 3, 1063 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CY., Chi, GC., Wang, WM. et al. Electrical transport properties of single GaN and InN nanowires. J. Electron. Mater. 35, 738–743 (2006). https://doi.org/10.1007/s11664-006-0131-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0131-z

Key words

Navigation