Skip to main content
Log in

Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Soldering with the lead-free tin-base alloys requires substantially higher temperatures (∼235–250°C) than those (213–223°C) required for the current tin-lead solders, and the rates for intermetallic compound (IMC) growth and substrate dissolution are known to be significantly greater for these alloys. In this study, the IMC growth kinetics for Sn-3.7Ag, Sn-0.7Cu, and Sn-3.8Ag-0.7Cu solders on Cu substrates and for Sn-3.8Ag-0.7Cu solder with three different substrates (Cu, Ni, and Fe-42Ni) are investigated. For all three solders on Cu, a thick scalloped layer of η phase (Cu6Sn5) and a thin layer of ε phase (Cu3Sn) were observed to form, with the growth of the layers being fastest for the Sn-3.8Ag-0.7Cu alloy and slowest for the Sn-3.7Ag alloy. For the Sn-3.8Ag-0.7Cu solder on Ni, only a relatively uniform thick layer of η phase (Cu,Ni)6Sn5 growing faster than that on the Cu substrate was found to form. IMC growth in both cases appears to be controlled by grain-boundary diffusion through the IMC layer. For the Fe-42Ni substrate with the Sn-3.8Ag-0.7Cu, only a very thin layer of (Fe,Ni)Sn2 was observed to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Kang, R.S. Rai, and S. Purushothanman, J. Electron. Mater. 25, 1113 (1996).

    CAS  Google Scholar 

  2. S. Chada, W. Laub, R.A. Fournelle, and D. Shangguan, J. Electron. Mater. 28, 1194 (1999).

    Article  CAS  Google Scholar 

  3. T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, and C.-Y. Li, J. Electron. Mater. 29, 1194 (2000).

    Article  CAS  Google Scholar 

  4. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, J. Electron. Mater. 30, 1157 (2001).

    CAS  Google Scholar 

  5. C.E. Ho, Y.L. Lin, and C.R. Kao, Chem. Mater. 14, 949 (2002).

    Article  CAS  Google Scholar 

  6. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, J. Electron. Mater. 31, 584 (2002).

    Article  CAS  Google Scholar 

  7. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, J. Electron. Mater. 32, 1203 (2003).

    Article  CAS  Google Scholar 

  8. J.H. Kim, S.W. Jeong, H.D. Kim, and H.M. Lee, J. Electron. Mater. 32, 1228 (2003).

    Article  CAS  Google Scholar 

  9. C.-W. Hwang, K.-S. Kim, and K. Suganuma, J. Electron. Mater. 32, 1249 (2003).

    Article  CAS  Google Scholar 

  10. S.J. Wang and C.Y. Liu, J. Electron. Mater. 32, 1303 (2003).

    Article  CAS  Google Scholar 

  11. T.H. Chuang, H.M. Wu, M.D. Cheng, S.Y. Chang, and S.F. Yen, J. Electron. Mater. 33, 22 (2004).

    Article  CAS  Google Scholar 

  12. Z. Chen, M. He, and G. Qi, J. Electron. Mater. 33, 1465 (2004).

    CAS  Google Scholar 

  13. H.-F. Hsu and S.-W. Chen, Acta Mater. 52, 2541 (2004).

    Article  CAS  Google Scholar 

  14. A. Sharif and Y.C. Chan, J. Electron. Mater. 34, 46 (2005).

    Article  CAS  Google Scholar 

  15. G.-Y. Jang and J.-G. Duh, J. Electron. Mater. 34, 68 (2005).

    Article  CAS  Google Scholar 

  16. Y.-D. Jeon, K.-W. Paik, A. Ostmann, and H. Reichl, J. Electron. Mater. 34, 80 (2005).

    Article  CAS  Google Scholar 

  17. M.N. Islam, A. Sharif, and Y.C. Chan, J. Electron. Mater. 34, 143 (2005).

    Article  CAS  Google Scholar 

  18. H.K. Kim and K.N. Tu, Phys. Rev. B: Condens. Matter Mater. Phys. 53, 16027 (1996).

    CAS  Google Scholar 

  19. M. Schaefer, R.A. Fournelle, and J. Liang, J. Electron. Mater. 27, 1167 (1998).

    Article  CAS  Google Scholar 

  20. R. Gagliano and M.E. Fine, J. Electron. Mater. 32, 1441 (2003).

    Article  CAS  Google Scholar 

  21. M. Schaefer, W. Laub, J.M. Sabee, R.A. Fournelle, and P.S. Lee, J. Electron. Mater. 25, 992 (1996).

    CAS  Google Scholar 

  22. M. Schaefer, W. Laub, R.A. Fournelle, and J. Liang, Design and Reliability of Solders and Solder Interconnects, ed. R.K. Mahidhara et al. (Warrendale, PA: TMS, 1997), p. 247.

    Google Scholar 

  23. J. London and D.W. Ashall, Brazing Soldering 11, 49 (1986).

    Google Scholar 

  24. I. Kaur and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion, 2nd ed. (Stuttgart, Germany: Ziegler Press, 1989), p. 302.

    Google Scholar 

  25. P. Shewmon, Diffusion in Solids, 2nd ed. (Warrendale, PA: TMS, 1987), p. 198.

    Google Scholar 

  26. S.-W. Chen and C.-A. Chang, J. Electron. Mater. 33, 1071 (2004).

    Article  CAS  Google Scholar 

  27. J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State (London, England: The Institute of Metals, 1987), pp. 42–48.

    Google Scholar 

  28. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (Berkshire, England: Van Nostrand Reinhold, 1981), pp. 279–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dariavach, N., Callahan, P., Liang, J. et al. Intermetallic growth kinetics for Sn-Ag, Sn-Cu, and Sn-Ag-Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35, 1581–1592 (2006). https://doi.org/10.1007/s11664-006-0152-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0152-7

Key words

Navigation