Skip to main content
Log in

Growth and Characterization of Unintentionally Doped GaSb Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

GaSb nanowires were synthesized on c-plane sapphire substrates by gold-mediated vapor–liquid–solid (VLS) growth using a metalorganic chemical vapor deposition process. A narrow process window for GaSb nanowire growth was identified. Chemical analysis revealed variations in the catalyst composition which were explained in terms of the Au-Ga-Sb ternary phase diagram and suggest that the VLS growth mechanism was responsible for the nanowire growth. The nominally undoped GaSb nanowires were determined to be p-type with resistivity on the order of 0.23 Ω cm. The photoluminescence was found to be highly dependent on the V/III ratio, with an optimal ratio of unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Xu, A. Chin, L. Ye, C.-Z. Ning, and H. Yu, SPIE Proceedings on Electrical and optical characterization of individual GaSb nanowires (San Jose, 2009).

  2. A.H. Chin, S. Vaddiraju, A.V. Maslov, C.Z. Ning, M.K. Sunkara, and M. Meyyappan, Appl. Phys. Lett. 88, 163115 (2006).

    Article  ADS  Google Scholar 

  3. N. Mingo and D.A. Broido, Phys. Rev. Lett. 93, 246106 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. P.S. Dutta, H.L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997).

    Article  CAS  ADS  Google Scholar 

  5. R.M. Biefeld, Mater. Sci. Eng. R Rep. 36, 105 (2002).

    Article  Google Scholar 

  6. A. Lugstein, J. Bernardi, C. Tomastik, and E. Bertagnolli, Appl. Phys. Lett. 88, 163114 (2006).

    Article  ADS  Google Scholar 

  7. S. Vaddiraju, M. Sunkara, A. Chin, C. Ning, and G. Dholakia, J. Phys. Chem. C 111, 7339 (2007).

    Article  CAS  Google Scholar 

  8. Y.N. Guo, J. Zou, M. Paladugu, H. Wang, Q. Gao, H.H. Tan, and C. Jagadish, Appl. Phys. Lett. 89, 231917 (2006).

    Article  ADS  Google Scholar 

  9. M. Jeppsson, K. Dick, H. Nilsson, N. Skold, J. Wagner, P. Caroff, and L.-E. Wernersson, J. Cryst. Growth 310, 5119 (2008).

    Article  CAS  ADS  Google Scholar 

  10. M. Jeppsson, K. Dick, J. Wagner, P. Caroff, K. Deppert, L. Samuelson, and L.-E. Wernersson, J. Cryst. Growth 310, 4115 (2008).

    Article  CAS  ADS  Google Scholar 

  11. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, and T.E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000).

    Article  CAS  ADS  Google Scholar 

  12. J.A. Robinson and S.E. Mohney, J. Appl. Phys. 98, 033703 (2005).

    Article  ADS  Google Scholar 

  13. X. Weng, R.A. Burke, E.C. Dickey, and J.M. Redwing, J. Cryst. Growth 312, 514 (2010).

    Google Scholar 

  14. A. Subekti, E.M. Goldys, M.J. Paterson, K. Drozdowicz-Tomsia, and T.L. Tansley, J. Mater. Res. 14, 1238 (1999).

    Article  CAS  ADS  Google Scholar 

  15. T. Koljonen, M. Sopanen, H. Lipsanen, and T. Tuomi, J. Electron. Mater. 24, 1691 (1995).

    Article  CAS  ADS  Google Scholar 

  16. A. Subekti, E.M. Goldys, and T.L. Tansley, Conference on Growth of Gallium Antimonide (GaSb) by Metalorganic Chemical Vapour Deposition (IEEE, 1997), pp. 426–429.

  17. F. Pascal, F. Delannoy, J. Bougnot, L. Gouskov, G. Bougnot, P. Grosse, and J. Kaoukab, J. Electron. Mater. 19, 187 (1990).

    Article  CAS  ADS  Google Scholar 

  18. M.K. Rathi, B.E. Hawkins, and T.F. Kuech, J. Cryst. Growth 296, 117 (2006).

    Article  CAS  ADS  Google Scholar 

  19. A.I. Persson, M.W. Larsson, S. Stenstrom, B.J. Ohlsson, L. Samuelson, and L.R. Wallenberg, Nat. Mater. 3, 677 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. C.T. Tsai and R.S. Williams, J. Mater. Res. 1, 352 (1986).

    Article  CAS  ADS  Google Scholar 

  21. W.E. Lui and S.E. Mohney, J. Electron. Mater. 32, 1090 (2003).

    Article  ADS  Google Scholar 

  22. H. Okamoto and T.B. Massalski, eds., Phase Diagrams of Binary Gold Alloys (Materials Park, OH: ASM International, 1987).

    Google Scholar 

  23. H. Yasuda and H. Mori, J. Cryst. Growth 237–239, 234 (2002).

    Article  Google Scholar 

  24. H. Yasuda, M. Takeguchi, K. Mitsuishi, M. Tanaka, M. Song, K. Furuya, and H. Mori, J. Electron. Microsc. 51, S215 (2002).

    Article  Google Scholar 

  25. M. Ohring, Materials Science of Thin Films, 2nd ed. (New York: Academic, 2002).

    Google Scholar 

  26. S.C. Hardy, J. Cryst. Growth 71, 602 (1985).

    Article  CAS  ADS  Google Scholar 

  27. V.K. Kumikov and K.B. Khokonov, J. Appl. Phys. 54, 1346 (1983).

    Article  CAS  ADS  Google Scholar 

  28. A. Tegetmeier, A. Croll, A. Danilewsky, and K.W. Benz, J. Cryst. Growth 166, 651 (1996).

    Article  CAS  ADS  Google Scholar 

  29. V.A. Nebol’sin and A.A. Shchetinin, Inorg. Mater. 39, 899 (2003).

    Article  Google Scholar 

  30. Y.J. Van Der Meulen, J. Phys. Chem. Solids 28, 25 (1967).

    Article  ADS  Google Scholar 

  31. W.G. Hu, Z. Wang, B.F. Su, Y.Q. Dai, S.J. Wang, and Y.W. Zhao, Phys. Lett. A 332, 286 (2004).

    Article  CAS  ADS  Google Scholar 

  32. K. Yamamoto, H. Asahi, K. Inoue, K. Miki, X.F. Liu, D. Marx, A.B. Villaflor, K. Asami, and S. Gonda, J. Cryst. Growth 150, 853 (1995).

    Article  CAS  ADS  Google Scholar 

  33. P.W. Chye, I. Lindau, P. Pianetta, C.M. Garner, C.Y. Su, and W.E. Spicer, Phys. Rev. B 18, 5545 (1978).

    Article  CAS  ADS  Google Scholar 

  34. P.W. Chye, T. Sukegawa, I.A. Babalola, H. Sunami, P. Gregory, and W.E. Spicer, Phys. Rev. B 15, 2118 (1977).

    Article  CAS  ADS  Google Scholar 

  35. W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. Technol. 16, 1422 (1979).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant No. ECS-0093742 and The Pennsylvania State University Materials Research Science and Engineering Center (MRSEC) on Nanoscale Science. Additional support was provided by Illuminex Corp. under an NSF Phase I STTR program (0740336). The TEM work was performed in the electron microscopy facility of the Materials Characterization Laboratory (MCL) at the Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Redwing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, R.A., Weng, X., Kuo, MW. et al. Growth and Characterization of Unintentionally Doped GaSb Nanowires. J. Electron. Mater. 39, 355–364 (2010). https://doi.org/10.1007/s11664-010-1140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1140-5

Keywords

Navigation