Skip to main content
Log in

Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermal annealing and electromigration (EM) tests were performed with Cu pillar/Sn bumps to understand the growth mechanism of intermetallic compounds (IMCs). Annealing tests were carried out at both 100°C and 150°C. At 150°C, EM tests were performed using a current density of 3.5 × 104 A/cm2. The electrical failure mechanism of the Cu pillar/Sn bumps was also investigated. Cu3Sn formed and grew at the Cu pillar/Cu6Sn5 interface with increasing annealing and current-stressing times. The growth mechanism of the total (Cu6Sn5 + Cu3Sn) IMC changed when the Sn phase in the Cu pillar/Sn bump was exhausted. The time required for complete consumption of the Sn phase was shorter during the EM test than in the annealing test. Both IMC growth and phase transition from Cu6Sn5 to Cu3Sn had little impact on the electrical resistance of the whole interconnect system during current stressing. Electrical open failure in the Al interconnect near the chip-side Cu pillar edge implies that the Cu pillar/Sn bump has excellent electrical reliability compared with the conventional solder bump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).

    CAS  Google Scholar 

  2. J.H. Lee, G.T. Lim, S.T. Yang, M.S. Suh, Q.H. Chung, K.Y. Byun, and Y.B. Park, J. Kor. Inst. Met. Mater. 46, 310 (2008).

    CAS  Google Scholar 

  3. V.S. Rao, V. Kripseph, S.W. Yoon, D. Witarsa, and A.A.O. Tay, Proceedings of 6th Electronic Packing Technology Conference (IEEE, 2004), pp. 444–449.

  4. M. Ding, G. Wang, B. Chao, P.S. Ho, P. Su, and T. Uehling, J. Appl. Phys. 99, 094906 (2006).

    Article  ADS  Google Scholar 

  5. H.Y. Son, G.J. Jung, B.J. Park, and K.W. Paik, J. Electron. Mater. 37, 1832 (2008).

    Article  CAS  ADS  Google Scholar 

  6. K.N. Tu and R.D. Thompson, Acta Metall. 30, 947 (1982).

    Article  CAS  Google Scholar 

  7. R. Labie, W. Ruythooren, and J.A. Humbeeck, Intermetallics 15, 396 (2007).

    Article  CAS  Google Scholar 

  8. B. Chao, S.H. Chae, X. Zhang, K.H. Lu, M. Ding, J. Im, and P.S. Ho, J. Appl. Phys. 100, 084909 (2006).

    Article  ADS  Google Scholar 

  9. J.H. Lee and Y.B. Park, J. Electron. Mater. 38, 2194 (2009).

    Article  CAS  ADS  Google Scholar 

  10. J.H. Lee, G.T. Lim, S.T. Yang, M.S. Suh, Q.H. Chung, K.Y. Byun, and Y.B. Park, J. Kor. Phys. Soc. 54, 1784 (2009).

    Article  CAS  Google Scholar 

  11. G.T. Lim, B.J. Kim, K.W. Lee, J.D. Kim, Y.C. Joo, and Y.B. Park, J. Electron. Mater. 38, 2228 (2009).

    Article  CAS  ADS  Google Scholar 

  12. B.J. Kim, G.T. Lim, J.D. Kim, K.W. Lee, Y.B. Park, H.Y. Lee, and Y.C. Joo, Met. Mater. Inst. 15, 815 (2009).

    Article  CAS  Google Scholar 

  13. G.T. Lim, J.H. Lee, B.J. Kim, K.W. Lee, M.J. Lee, Y.C. Joo, and Y.B. Park, J. Microelectron. Packag. Soc. 14, 15 (2007).

    Google Scholar 

  14. W. Peng, E. Monlevade, and M.E. Marques, Mictoelectron. Reliab. 47, 2161 (2007).

    Article  CAS  Google Scholar 

  15. F. Gao, H. Nishikawa, and T. Takemoto, J. Electron. Mater. 37, 45 (2008).

    Article  CAS  ADS  Google Scholar 

  16. W. Yang and R.W. Messler Jr., J. Electron. Mater. 23, 765 (1994).

    Article  CAS  ADS  Google Scholar 

  17. Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, Proceedings of 55th Electronics Components and Technology Conference (IEEE, 2005), pp. 415–420.

  18. C.M. Tsai, W.C. Luo, C.W. Chang, Y.C. Shieh, and C.R. Kao, J. Electron. Mater. 33, 1424 (2004).

    Article  CAS  ADS  Google Scholar 

  19. B.-J. Kim, G.-T. Lim, J. Kim, K. Lee, Y.-B. Park, H.-Y. Lee, and Y.-C. Joo, J. Electron. Mater. doi:10.1007/s11664-010-1324-z.

  20. H. Gan and K.N. Tu, J. Appl. Phys. 97, 063514 (2005).

    Article  ADS  Google Scholar 

  21. C.Y. Liu, L. Ke, Y.C. Chuang, and S.J. Wang, J. Appl. Phys. 100, 083702 (2006).

    Article  ADS  Google Scholar 

  22. K. Tanida, M. Umemoto, N. Tanaka, Y. Tomita, and K. Takahashi, Jpn. J. Appl. Phys. 43, 2264 (2004).

    Article  CAS  ADS  Google Scholar 

  23. H.T. Lee, M.H. Chen, H.M. Jao, and T.L. Liao, Mater. Sci. Eng. A358, 134 (2003).

    Article  CAS  Google Scholar 

  24. A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski, and J. Schubert, Appl. Phys. Lett. 66, 6 (1995).

    Article  Google Scholar 

  25. H. Moil, H. Okabayashi, and M. Komatsu, Thin Solid Films 300, 25 (1997).

    Article  ADS  Google Scholar 

  26. Y.B. Park, D.W. Lee, H.H. Ryu, and W.G. Lee, J. Electron. Mater. 30, 1569 (2001).

    Article  CAS  MathSciNet  ADS  Google Scholar 

  27. J.W. Nah, J.O. Suh, K.N. Tu, S.W. Yoon, V.S. Rao, V. Kripesh, and F. Hua, J. Appl. Phys. 100, 123513 (2006).

    Article  ADS  Google Scholar 

  28. H.Y. Son, I.H. Kim, S.B. Lee, G.J. Jung, B.J. Park, and K.W. Paik, J. Microelectron. Packag. Soc. 15, 37 (2008).

    Google Scholar 

  29. K.N. Tu, J. Appl. Phys. 94, 5451 (2003).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Bae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, MH., Lim, GT., Kim, BJ. et al. Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps. J. Electron. Mater. 39, 2368–2374 (2010). https://doi.org/10.1007/s11664-010-1345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1345-7

Keywords

Navigation