Skip to main content
Log in

Influence of Substrate Temperature on Structural and Thermoelectric Properties of Antimony Telluride Thin Films Fabricated by RF and DC Cosputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Antimony and tellurium were deposited on BK7 glass using direct-current magnetron and radiofrequency magnetron cosputtering. Antimony telluride thermoelectric thin films were synthesized with a heated substrate. The effects of substrate temperature on the structure, surface morphology, and thermoelectric properties of the thin films were investigated. X-ray diffraction patterns revealed that the thin films were well crystallized. c-Axis preferred orientation was observed in thin films deposited above 250°C. Scanning electron microscopy images showed hexagonal crystallites and crystal grains of around 500 nm in thin film fabricated at 250°C. Energy-dispersive spectroscopy indicated that a temperature of 250°C resulted in stoichiometric Sb2Te3. Sb2Te3 thin film deposited at room temperature exhibited the maximum Seebeck coefficient of 190 μV/K and the lowest power factor (PF), S 2 σ, of 8.75 × 10−5 W/mK2. When the substrate temperature was 250°C, the PF increased to its highest value of 3.26 × 10−3 W/mK2. The electrical conductivity and Seebeck coefficient of the thin film were 2.66 × 105 S/m and 113 μV/K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  2. R. Venkatasubramanian, E. Sivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  3. L.W. daSilva, M. Kaviany, A. DeHennis, and J.S. Dyck, 22nd International Conference on Thermoelectrics (2003), p. 665.

  4. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  5. M.Y. Kim and T.S. Oh, J. Electron. Mater. 38, 1176 (2009).

    Article  CAS  Google Scholar 

  6. H. Zou, D.M. Powe, and G. Min, J. Cryst. Growth 222, 82 (2001).

    Article  CAS  Google Scholar 

  7. Z. Xiao, K. Hedgemen, and M. Harris, J. Vac. Sci. Technol. A 28, 679 (2010).

    Article  CAS  Google Scholar 

  8. P. Fan, Z.H. Zheng, G.X. Liang, D.P. Zhang, and X.M. Cai, J. Alloys Compd. 505, 278 (2010).

    Article  CAS  Google Scholar 

  9. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, B. Aboulfarah, and A. Mzerd, J. Mater. Sci. Lett. 18, 541 (1999).

    Article  CAS  Google Scholar 

  10. Y. Kim, A. DiVenere, G.K.L. Wong, J.B. Ketterson, S. Cho, and J.R. Meyer, J. Appl. Phys. 91, 715 (2002).

    Article  CAS  Google Scholar 

  11. K. Parka, F. Xiao, B.Y. Yoo, Y. Rheem, and N. Myung, J. Alloys Compd. 485, 362 (2009).

    Article  Google Scholar 

  12. Joint Commission on Powder Diffraction Standards (JCPDS) file No. 15-0874.

  13. JCPDS file No. 36-1452.

  14. JCPDS file No. 45-1229.

  15. Y.W. Gao, Y.Z. He, and L.L. Zhu, Chin. Sci. Bull. 55, 16 (2010).

    Article  Google Scholar 

  16. X. Duan and Y. Jiang, Appl. Surf. Sci. 256, 7368 (2010).

    Article  Google Scholar 

  17. L.M. Goncalves, P. Alpuimb, Gao. Min, D.M. Rowe, C. Couto, and J.H. Correia, Vacuum 82, 1499 (2008).

    Article  CAS  Google Scholar 

  18. K. Wojciechowski, E. Godlewska, K. Mars, R. Mania, G. Karpinski, P. Ziolkowski, C. Stiewe, and E. Muller, Vacuum 82, 1003 (2008).

    Article  CAS  Google Scholar 

  19. W. Zhu, J.Y. Yang, D.X. Zhou, C.J. Xiao, and X.K. Duan, Electrochim. Acta 53, 3579 (2008).

    Article  CAS  Google Scholar 

  20. T.B. Chen, P. Fan, Z.H. Zheng, D.P. Zhang, X.M. Cai, G.X. Liang, and J.R. Chi, Adv. Mater. Res. 194–196, 2400 (2011).

    Article  Google Scholar 

  21. O. Vigil-Galan, F. Cruz-Gandarilla, J. Fandino, F. Roy, J. Sastre-Hernandez, and G. Contreras-Puente, Semicond. Sci. Technol. 24, 025025 (2009).

    Article  Google Scholar 

  22. B.L. Huang, C. Lawrence, A. Gross, G. Hwang, N. Ghafouri, S. Lee, H. Kim, C. Li, C. Uher, K. Najafi, and M. Kaviany, J. Appl. Phys. 104, 113710 (2008).

    Article  Google Scholar 

  23. P. Fan, Z.H. Zheng, G.X. Liang, X.M. Cai, and D.P. Zhang, Chin. Phys. Lett. 27, 087201 (2010).

    Article  Google Scholar 

  24. S.K. Lim, M.Y. Kim, and T.S. Oh, Thin Solid Films 517, 4199 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Fan, P., Zheng, Z. et al. Influence of Substrate Temperature on Structural and Thermoelectric Properties of Antimony Telluride Thin Films Fabricated by RF and DC Cosputtering. J. Electron. Mater. 41, 679–683 (2012). https://doi.org/10.1007/s11664-011-1896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1896-2

Keywords

Navigation