Skip to main content
Log in

Thermal Parameters, Microstructure, and Mechanical Properties of Directionally Solidified Sn-0.7 wt.%Cu Solder Alloys Containing 0 ppm to 1000 ppm Ni

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Environmental concerns over the toxicity of Pb are resulting in the progressive ban of Pb-based solders as part of electrical and electronic devices. Sn-Cu alloys are becoming interesting Pb-free solder alternatives. In the case of hypoeutectic Sn-Cu alloys (<0.7 wt.% Cu), small alloying additions of Ni can prevent the growth of coarse and deleterious Cu6Sn5 particles. Solidification thermal parameters such as the growth rate, cooling rate, and interfacial heat transfer coefficient (h i) determine the morphology and scale of the phases forming the resulting microstructure. In the present study, directional solidification experiments were carried out with Sn-0.7 wt.%Cu, Sn-0.7 wt.% Cu-0.05 wt.%Ni, and Sn-0.7 wt.%Cu-0.1 wt.%Ni alloys and interrelations of solidification thermal parameters, microstructure, and tensile properties have been established. The highest time-dependent h i profile was found for the Sn-0.7 wt.%Cu-0.1 wt.%Ni alloy, which is an indication that this alloy has the highest fluidity. Constrained dendritic arrangements were observed for all alloys experimentally examined. This morphology has been associated with high cooling rates and growth rates. Cellular regions, characterized by aligned eutectic colonies, were also observed to occur for cooling rates lower than 0.9 K/s and 6.0 K/s for the unmodified Sn-0.7 wt.%Cu alloy and for both Ni-modified Sn-Cu alloys, respectively. Experimental Hall–Petch-type equations correlating the ultimate tensile strength and elongation with cell/dendritic spacings are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.R. Garcia, W.R. Osório, L.C. Peixoto, and A. Garcia, Mater. Charact. 61, 212 (2010).

    Article  CAS  Google Scholar 

  2. J. Chen, J. Shen, D. Min, and C.F. Peng, J. Mater. Sci. 20, 1112 (2009).

    CAS  Google Scholar 

  3. Y. Li, K.-S. Moon, and C.P. Wong, Science 308, 1419 (2005).

    Article  CAS  Google Scholar 

  4. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraslı, and A. ülgen, J. Alloys Compd. 486, 199 (2009).

    Article  Google Scholar 

  5. L.R. Garcia, W.R. Osório, L.C. Peixoto, and A. Garcia, J. Electron. Mater. 38, 2405 (2009).

    Article  CAS  Google Scholar 

  6. G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, and F. Guo, J. Alloys Compd. 491, 382 (2010).

    Article  CAS  Google Scholar 

  7. K. Nogita, Intermetallics 18, 145 (2010).

    Article  CAS  Google Scholar 

  8. K.G. Snowdon, C.G. Tanner, J.R. Thompson, Proceedings of 50th ECTC, Las Vegas, NV (Piscataway, NJ: IEEE, 2000), p. 1416.

  9. J.E. Spinelli, D.M. Rosa, I.L. Ferreira, and A. Garcia, Mater. Sci. Eng. A 383, 271 (2004).

    Google Scholar 

  10. P. Donelan, Mater. Sci. Technol. 16, 261 (2000).

    CAS  Google Scholar 

  11. P.R. Goulart, J.E. Spinelli, N. Cheung, and A. Garcia, Mater. Chem. Phys. 119, 272 (2010).

    Article  CAS  Google Scholar 

  12. I.T.L. Moura, C.L.M. Silva, N. Cheung, P.R. Goulart, A. Garcia, and J.E. Spinelli, Mater. Chem. Phys. 132, 203 (2012).

    Article  CAS  Google Scholar 

  13. N. Tewari, S.V. Raj, and I.E. Locci, Met. Mater. Trans. 35A, 1632 (2004).

    Article  CAS  Google Scholar 

  14. K. Nimmo, Lead-Free Soldering in Electronics, ed. K. Suganuma, chap. 3 (New York: Marcel Dekker Inc., 2004).

  15. T. Ventura, C.M. Gourlay, K. Nogita, T. Nishimura, M. Rappaz, and A.K. Dahle, J. Electron. Mater. 37, 32 (2008).

    Article  CAS  Google Scholar 

  16. H. Tsukamoto, Z. Dong, H. Huang, T. Nishimura, and K. Nogita, Mater. Sci. Eng. B 164, 44 (2009).

    Article  CAS  Google Scholar 

  17. O.L. Rocha, C.A. Siqueira, and A. Garcia, Mater. Sci. Eng. A 347, 59 (2003).

    Article  Google Scholar 

  18. A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, and A. Garcia, Mater. Des. 31, 4584 (2010).

    Article  CAS  Google Scholar 

  19. T. Chellaih, G. Kumar, and N. Prabhu, Mater. Des. 28, 1006 (2007).

    Article  CAS  Google Scholar 

  20. M. Gunduz and E. Çardili, Mater. Sci. Eng. A 327, 167 (2002).

    Article  Google Scholar 

  21. N. Cheung, N.S. Santos, J.M.V. Quaresma, G.S. Dulikravich, and A. Garcia, Int. J. Heat Mass Transf. 52, 451 (2009).

    Article  CAS  Google Scholar 

  22. I.L. Ferreira, J.E. Spinelli, J.E. Pires, and A. Garcia, Mater. Sci. Eng. A 408, 317 (2005).

    Article  Google Scholar 

  23. D.M. Rosa, J.E. Spinelli, I.L. Ferreira, and A. Garcia, Metall. Mater. Trans. 39A, 2161 (2008).

    Article  CAS  Google Scholar 

  24. I.L. Ferreira, C.A. Santos, V.R. Voller, and A. Garcia, Metall. Mater. Trans. 35B, 285 (2004).

    CAS  Google Scholar 

  25. C. Wang and S. Chen, Acta Mater. 54, 247 (2006).

    Article  CAS  Google Scholar 

  26. C.H. Wang and H.T. Shen, Intermetallics 18, 616 (2010).

    Article  Google Scholar 

  27. C.M. Gourlay, K. Nogita, A.K. Dahle, Y. Yamamoto, K. Uesugi, T. Nagira, M. Yoshiya, and H. Yasuda, Acta Mater. 59, 4043 (2011).

    Article  CAS  Google Scholar 

  28. T. Nishimura, U.S. patent 6,180,055 B1 (2001).

  29. S. Chen, S. Lee, and M. Yip, J. Electron. Mater. 32, 1284 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by FAPESP (The Scientific Research Foundation of the State of São Paulo, Brazil), CNPq (The Brazilian Research Council), and IFSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Spinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, B.L., Cheung, N., Garcia, A. et al. Thermal Parameters, Microstructure, and Mechanical Properties of Directionally Solidified Sn-0.7 wt.%Cu Solder Alloys Containing 0 ppm to 1000 ppm Ni. J. Electron. Mater. 42, 179–191 (2013). https://doi.org/10.1007/s11664-012-2263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2263-7

Keywords

Navigation