Skip to main content
Log in

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Yu and K.T. Chau, Energy Convers. Manage. 50, 1506 (2009).

    Article  CAS  Google Scholar 

  2. F. Stabler, Proceedings of DARPA/ONR/DOE High Efficiency Thermoelectric Workshop 2002, pp. 1–26 (2002).

  3. J. Yang, Proceedings of 24th International Conference on Thermoelectrics (ICT) 2005, pp. 170–174 (2005).

  4. D.M. Rowe, Int. J. Innovations Energy Syst. Power 1, 13 (2006).

    Google Scholar 

  5. D. M. Rowe, CRC Handbook of Thermoelectrics, (CRC Press, 1995), pp. 441–458.

  6. D.T. Crane and J.W. LaGrandeur, J. Electron. Mater. 39, 2142 (2009).

    Article  Google Scholar 

  7. G. P. Meisner, 2011 Thermoelectrics Applications Workshop, San Diego (2011).

  8. U. Birkholz, E. Grob, U. Stohrer, K. Voss, D. O. Gruden, and W. Wurster, Proceedings of 7th International Conference on Thermoelectric Energy Conversion 1988, pp. 124–128 (1988).

  9. E. Takanose and H. Tamakoshi, Proceedings of 12th International Conference on Thermoelectrics (ICT) 1994, pp. 467–470 (1994).

  10. C. Vinning and D. M. Rowe, CRC Handbook of Thermoelectrics, (CRC Press, 1995), pp. 329–337.

  11. M.S. Dresselhaus, Y.M. Lin, T. Koga, S.B. Cronin, O. Rabin, M.R. Blackand, and G. Dresselhaus, in Semiconductors and Semimetals, ed. By T. M. Tritt (Elsevier, 2001), pp. 1–121.

  12. X. Tang, Q. Zhang, L. Chen, T. Goto, and T. Hirai, J. Appl. Phys. 97, 093712 (2005).

    Article  Google Scholar 

  13. G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 57 (2010).

    Article  CAS  Google Scholar 

  14. D.M. Rowe, Renewable Energy 16, 1251 (1999).

    Article  Google Scholar 

  15. K. Saqr and M. Musa, Thermal Sci. 13, 165 (2009).

    Article  Google Scholar 

  16. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  17. C. Suter, P. Tomeš, A. Weidenkaff, and A. Steinfeld, Materials 3, 2735 (2010).

    Article  CAS  Google Scholar 

  18. P. Tomeš, M. Trottmann, C. Suter, M.H. Aguirre, A. Steinfeld, P. Haueter, and A. Weidenkaff, Materials 3, 2801 (2010).

    Article  Google Scholar 

  19. S. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  20. N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, J. Electron. Mater. 39, 1446 (2010).

    Article  CAS  Google Scholar 

  21. K. Chau, Y. Wong, and C. Chan, Energy Convers. Manage. 40, 1021 (1999).

    Article  CAS  Google Scholar 

  22. P. Yodovard, J. Khedari, and J. Hirunlabh, Energy Sources 23, 213 (2001).

    Article  Google Scholar 

  23. R. Funahashi, 2009 Thermoelectrics Applications Workshop, San Diego (2009).

  24. D.T. Morelli, Proceedings of 15th International Conference on Thermoelectrics 1996, pp. 383–386 (1996).

  25. A.B. Neild, SAE Technical Paper 630019 (1963). doi: 10.4271/630019.

  26. A.B. Neild, SAE Technical Paper 670452 (1967). doi: 10.4271/670452.

  27. J. Bass, R.J. Campana, and N.B. Elsner, Proceedings of Annual Automotive Technology Development Contractors Coordination Meeting 1992, pp. 743–748 (1992).

  28. J.C. Bass, N.B. Elsner, and F.A. Leavitt, AIP Conf. Proc. 316, 295 (1994).

    Article  Google Scholar 

  29. K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, and K. Shinohara, Proceedings of 17th International Conference on Thermoelectrics (ICT) 1998, pp. 464–467 (1998).

  30. E.F. Thacher, 2006 Diesel Engine-Efficiency and Emmisions Research (DEER) Conference Presentations, Detroit (2006).

  31. E.F. Thacher, B.T. Helenbrook, M.A. Karri, and C.J. Richter, Proc IMechE Part D: J. Auto. Eng. 221, 95 (2007).

    Article  Google Scholar 

  32. M.A. Karri, E.F. Thacher, and B.T. Helenbrook, Energy Convers. Manage. 52, 1596 (2011).

    Article  CAS  Google Scholar 

  33. D.M. Rowe, J. Smith, G. Thomas, and G. Min, J. Electron. Mater. 40, 784 (2011).

    Article  CAS  Google Scholar 

  34. A. Eder, J. Liebi, and D. Jänsch, in Thermoelektrik Eine Chance für die Automobilindustrie (Renningen, Germany:expert verlag, 2009), pp. 45–56.

  35. J. W. Fairbanks, 2011 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations, Detroit (2011).

  36. J. Yang, 2009 Thermoelectrics Applications Workshop, San Diego (2009).

  37. G. P. Meisner, 2011 Diesel Engine-Efficiency and Emissions Research (DEER) Conference Presentations, Detroit (2011).

  38. H. Xiao, X. Gou, and C. Yang, Proceedings of Asia Simulation Conference: 7th International Conference on System Simulation and Scientific Computing ICSC 2008, pp. 1183–1187 (2008).

  39. J. Yu and H. Zhao, J. Power Sources 172, 428 (2007).

    Article  CAS  Google Scholar 

  40. F. Meng, L. Chen, and F. Sun, Energy 36, 3513 (2011).

    Article  Google Scholar 

  41. D.T. Crane, J. Electron. Mater. 40, 561 (2010).

    Article  Google Scholar 

  42. Y.Y. Hsiao, Energy 35, 1447 (2010).

    Article  CAS  Google Scholar 

  43. K. Matsubara, Proceedings of 21 st International Conference on Thermoelectrics (ICT) 2002, pp. 418–423 (2002).

  44. X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Int. J. Heat Mass Transf. 45, 5159 (2002).

    Article  Google Scholar 

  45. G. Liang, J. Zhou, and X. Huang, Appl. Energy 88, 5193 (2011).

    Article  Google Scholar 

  46. B.A. Cola, X. Xu, T.S. Fisher, M.A. Capano, and P.B. Amama, Nanoscale Microscale Thermophys. Eng. 12, 228 (2008).

    Article  CAS  Google Scholar 

  47. B.A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher, and H. Hu, J. Appl. Phys. 101, 054313 (2007).

    Article  Google Scholar 

  48. B.A. Cola, J. Xu, and T.S. Fisher, Int. J. Heat Mass Transf. 52, 3490 (2009).

    Article  CAS  Google Scholar 

  49. T.J. Hendricks and J.A. Lustbader, Proceedings of 21st International Conference on Thermoelectrics (ICT) 2002, pp. 381–386 (2002).

  50. C. Baker, P. Vuppuluri, L. Shi, and M. Hall, J. Electron. Mater. 41, 1290 (2012).

    Article  CAS  Google Scholar 

  51. F.P. Incropera and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, 2007), pp. 137–168.

  52. H. Chanson, Hydraulics of Open Channel Flow: An Introduction, 2nd edn., (Butterworth–Heinemann, 2004), p. 231.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeet Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Heister, S.D., Xu, X. et al. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis. J. Electron. Mater. 42, 665–674 (2013). https://doi.org/10.1007/s11664-013-2471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2471-9

Keywords

Navigation