Skip to main content
Log in

Chemiresistive Gas Sensing by Few-Layered Graphene

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A chemiresistive gas sensor based on few-layered graphene (FLG) has been fabricated and evaluated for carbon dioxide (CO2) and liquid petroleum gas (LPG) sensing. The electrochemical exfoliation method was used to synthesize FLG. The resulting sample of FLG was characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy, and transmission electron microscopy with selected-area diffraction. Ultraviolet–visible and fluorescence spectroscopy were employed to study the optical properties. Thermal behavior was analyzed through thermogravimetric–differential thermal analysis. The sensing response of the chemiresistor is defined as the ratio of resistance in gas to air at the stabilized resistance in air. The FLG chemiresistor exhibited good sensing response (3.83 for CO2, 0.92 for LPG), response time (11 s for CO2, 5 s for LPG), recovery time (14 s for CO2, 18 s for LPG), and resolution limit (3 ppm for CO2, 4 ppm for LPG), and excellent stability at room temperature. The gas sensing mechanism is discussed on the basis of marginal difference in Raman intensity and also by using defect chemistry through fluorescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Waghuley, R.S. Bobade, A.V. Kohle, G.G. Muley, S.S. Yawale, F.C. Raghuvanshi, B.H. Pawar, and S.P. Yawale, Adv. Mater. Rapid Commun. 4, 97 (2010).

    CAS  Google Scholar 

  2. D. Haridas, V. Gupta, and K. Sreenivas, Bull. Mater. Sci. 31, 1 (2008).

    Article  Google Scholar 

  3. H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang, and M.M. Cheng, Sens. Actuators B 157, 310 (2011).

    Article  CAS  Google Scholar 

  4. K.R. Ratinac, W. Yang, S.P. Ringer, and F. Braet, Environ. Sci. Technol. 44, 1167 (2010).

    Article  CAS  Google Scholar 

  5. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  CAS  Google Scholar 

  6. H.Y. Jeong, D.S. Lee, H.K. Choi, D.H. Lee, J.E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, and S. Choi, Appl. Phys. Lett. 96, 213105 (2010).

    Article  Google Scholar 

  7. G. Ko, H.Y. Kim, J. Ahn, Y.M. Park, K.Y. Lee, and J. Kim, Curr. Appl. Phys. 10, 1002–1004 (2010).

    Article  Google Scholar 

  8. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, and A.T.C. Johnson, Nano Lett. 9, 1472–1475 (2009).

    Article  CAS  Google Scholar 

  9. J.S. Bunch, A.M. Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Science 315, 490 (2007).

    Article  CAS  Google Scholar 

  10. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  11. B. Aras and Q. Wang, Comput. Mater. Sci. 60, 245 (2012).

    Article  Google Scholar 

  12. Y. Zhang, J.Q. Xu, Q. Xiang, H. Li, Q.Y. Pan, and P.C. Xu, J.␣Phys. Chem. C 113, 3430 (2009).

    Article  CAS  Google Scholar 

  13. T. Gao and T.H. Wang, Appl. Phys. A 80, 1451 (2005).

    Article  CAS  Google Scholar 

  14. M. Kaur, N. Jain, K. Sharma, S. Bhattacharya, M. Roy, A.K. Tyagi, S.K. Gupta, and J.V. Yakhmi, Sens. Actuators B 133, 456 (2008).

    Article  CAS  Google Scholar 

  15. O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, and A.N. Redkin, Sens. Actuators B 144, 56 (2010).

    Article  CAS  Google Scholar 

  16. S. Hwang, J. Lim, H. Park, W.K. Kim, D. Kim, I.S. Song, J.H. Kim, S. Lee, D.H. Woo, and S.C. Jun, Curr. Appl. Phys. 12, 1017 (2012).

    Article  Google Scholar 

  17. C. Su, A. Lu, Y. Xu, F. Chen, A. Khlobystov, and L. Li, ACS Nano 5, 2332 (2011).

    Article  CAS  Google Scholar 

  18. S.A. Waghuley, S.M. Yenorkar, S.S. Yawale, and S.P. Yawale, Sens. Actuators B 128, 366 (2008).

    Article  CAS  Google Scholar 

  19. Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, and Y. Chen, Nano Res. 3, 661 (2010).

    Article  CAS  Google Scholar 

  20. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008).

    Article  CAS  Google Scholar 

  21. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  22. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).

    Article  CAS  Google Scholar 

  23. N.K. Memon, S.D. Tse, J.F. Al-Sharab, H. Yamaguchi, A.B. Goncalves, B.H. Kear, Y. Jaluria, E.Y. Andrei, and M. Chhowalla, Carbon 49, 5064 (2011).

    Article  CAS  Google Scholar 

  24. A.W. Robertson and J.H. Warner, Nano Lett. 11, 1182 (2011).

    Article  CAS  Google Scholar 

  25. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, and J. Kong, Nano Lett. 10, 4128 (2010).

    Article  CAS  Google Scholar 

  26. T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Prog. Mater. Sci. 57, 1061 (2012).

    Article  CAS  Google Scholar 

  27. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J.M. Tour, Nature 468, 549 (2010).

    Article  CAS  Google Scholar 

  28. P.C. Chang, Z. Fan, D. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, and J.G. Lu, Chem. Mater. 16, 5133 (2004).

    Article  CAS  Google Scholar 

  29. R. Schaub, E. Wahlstrom, A. Ronnaus, E. Laegsgaard, I. Stensgaard, and F. Besen-Bacher, Science 299, 377 (2003).

    Article  CAS  Google Scholar 

  30. J. Wang, Y. Kwak, I. Lee, S. Maeng, and G. Kim, Carbon 50, 4060 (2012).

    Google Scholar 

  31. V.D. Kapase, S.A. Ghosh, G.N. Chaudhari, and F.C. Raghuwanshi, Talanta 76, 610 (2008).

    Article  Google Scholar 

  32. S.R. Morisson, Sens. Actuators B 12, 425 (1987).

    Article  Google Scholar 

  33. S.A. Waghuley, S.M. Yenorkar, S.S. Yawale, and S.P. Yawale, Sens. Transducers 79, 1180 (2007).

    Google Scholar 

  34. L.K. Bangal, J.Y. Patil, I.S. Mulla, and S.S. Suryavanshi, Ceram. Int. 38, 4835 (2012).

    Article  Google Scholar 

  35. J. Dai and J. Yuan, Phys. Rev. B 81, 165414 (2010).

    Article  Google Scholar 

  36. O.V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).

    Article  Google Scholar 

  37. S. Pati, S.B. Majumder, and P. Banerji, J. Alloys Compd. 541, 376 (2012).

    Article  CAS  Google Scholar 

  38. V.E. Bochenkov and G.B. Sergeev, Am. Sci. Publ. 3, 31 (2010).

    CAS  Google Scholar 

  39. P. Matheswaran, R. Sathyamoorthy, and K. Asokan, Sens. Actuators B 177, 8 (2013).

    Article  CAS  Google Scholar 

  40. M. Casas-Cabanas, A.V. Chadwick, M.R. Palacín, and C.R. Michel, Sens. Actuators B 157, 380 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Head of the Department of Physics, Sant Gadge Baba Amravati University, Amravati, India and the Head of the Department of Chemical Science, North Maharashtra University, Jalgaon, India for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Waghuley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemade, K.R., Waghuley, S.A. Chemiresistive Gas Sensing by Few-Layered Graphene. J. Electron. Mater. 42, 2857–2866 (2013). https://doi.org/10.1007/s11664-013-2699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2699-4

Keywords

Navigation