Skip to main content
Log in

Characterization of ALD Beryllium Oxide as a Potential High-k Gate Dielectric for Low-Leakage AlGaN/GaN MOSHEMTs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The chemical and electrical characteristics of atomic layer deposited (ALD) beryllium oxide (BeO) on GaN were studied via x-ray photoelectron spectroscopy, current–voltage, and capacitance–voltage measurements and compared with those of ALD Al2O3 and HfO2 on GaN. Radiofrequency (RF) and power electronics based on AlGaN/GaN high-electron-mobility transistors are maturing rapidly, but leakage current reduction and interface defect (D it) minimization remain heavily researched. BeO has received recent attention as a high-k gate dielectric due to its large band gap (10.6 eV) and thermal stability on InGaAs and Si, but little is known about its performance on GaN. Unintentionally doped GaN was cleaned in dilute aqueous HCl immediately prior to BeO deposition (using diethylberyllium and H2O precursors). Formation of an interfacial layer was observed in as-deposited samples, similar to the layer formed during ALD HfO2 deposition on GaN. Postdeposition anneal (PDA) at 700°C and 900°C had little effect on the observed BeO binding state, confirming the strength of the bond, but led to increased Ga oxide formation, indicating the presence of unincorporated oxygen in the dielectric. Despite the interfacial layer, gate leakage current of 1.1 × 10−7 A/cm2 was realized, confirming the potential of ALD BeO for use in low-leakage AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, IEEE Electron Device Lett. 32, 632–634 (2011).

    Article  Google Scholar 

  2. J.W. Chung, K. Tae-Woo, and T. Palacios, IEEE Int. Electron Devices Meeting (IEDM) 30.2.1–30.2.4. (2010).

    Google Scholar 

  3. L. Dong Seup, G. Xiang, G. Shiping, D. Kopp, P. Fay, and T. Palacios, IEEE Electron Device Lett. 32, 1525–1527 (2011).

    Article  Google Scholar 

  4. Y. Yuanzheng, H. Yue, Z. JinCheng, N. Jinyu, M. Wei, F. Qian, and L. Linjie, IEEE Electron Device Lett. 29, 838–840 (2008).

    Article  Google Scholar 

  5. M.R. Coan, J.H. Woo, D. Johnson, I.R. Gatabi, and H.R. Harris, J. Appl. Phys. 112, 024508-024508-6 (2012).

    Google Scholar 

  6. R.D. Long, A. Hazeghi, M. Gunji, Y. Nishi, and P.C. McIntyre, Appl. Phys. Lett. 101, 5–241606 (2012).

    Google Scholar 

  7. N. Nepal, N.Y. Garces, D.J. Meyer, J.K. Hite, M.A. Mastro, and J.C.R. Eddy, Appl. Phys. Express 4, 055802 (2011).

    Article  Google Scholar 

  8. M. Van Hove, S. Boulay, S.R. Bahl, S. Stoffels, K. Xuanwu, D. Wellekens, K. Geens, A. Delabie, and S. Decoutere, IEEE Electron Device Lett. 33, 667–669 (2012).

    Article  Google Scholar 

  9. J.H. Yum, G. Bersuker, T. Akyol, D.A. Ferrer, M. Lei, P. Keun Woo, T.W. Hudnall, M.C. Downer, C.W. Bielawski, E.T. Yu, J. Price, J.C. Lee, and S.K. Banerjee, IEEE Trans. Electron Devices 58, 4384–4392 (2011).

    Article  Google Scholar 

  10. J.H. Yum, T. Akyol, D.A. Ferrer, J.C. Lee, S.K. Banerjee, M. Lei, M. Downer, T.W. Hudnall, C.W. Bielawski, and G. Bersuker, J. Vac. Sci. Technol. A: Vac. Surf. Films 29, 061501–061506 (2011).

    Article  Google Scholar 

  11. J.H. Yum, T. Akyol, M. Lei, D.A. Ferrer, T.W. Hudnall, M. Downer, C.W. Bielawski, G. Bersuker, J.C. Lee, and S.K. Banerjee, J. Cryst. Growth 334, 126–133 (2011).

    Article  Google Scholar 

  12. J.H. Yum, T. Akyol, M. Lei, T. Hudnall, G. Bersuker, M. Downer, C.W. Bielawski, J.C. Lee, and S.K. Banerjee, J. Appl. Phys. 109, 064101–064104 (2011).

    Article  Google Scholar 

  13. P. Sivasubramani, T.J. Park, B.E. Coss, A. Lucero, J. Huang, B. Brennan, Y. Cao, D. Jena, H. Xing, R.M. Wallace, and J. Kim, Phys. Stat. Sol. Rapid Res. Lett 6, 22–24 (2012).

    Article  Google Scholar 

  14. A. Malmros, H. Blanck, and N. Rorsman, Semicond. Sci. Technol. 26, 075006 (2011).

    Article  Google Scholar 

  15. C.L. Hinkle, M. Milojevic, E.M. Vogel, and R.M. Wallace, Appl. Phys. Lett. 95, 3–151905 (2009).

    Article  Google Scholar 

  16. C.-T. Lee, H.-W. Chen, and H.-Y. Lee, Appl. Phys. Lett. 82, 4304–4306 (2003).

    Article  Google Scholar 

  17. A. Fontsere, A. Perez-Tomas, V. Banu, P. Godignon, J. Millan, H. De Vleeschouwer, J. M. Parsey, P. Moens, 24th Int. Symp. Power Semicond. Devices and ICs (ISPSD) pp. 37–40, (2012).

  18. M. Lachab, M. Sultana, H. Fatima, V. Adivarahan, Q. Fareed, and M.A. Khan, Semicond. Sci. Technol. 27, 125001 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek W. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, D.W., Yum, J.H., Hudnall, T.W. et al. Characterization of ALD Beryllium Oxide as a Potential High-k Gate Dielectric for Low-Leakage AlGaN/GaN MOSHEMTs. J. Electron. Mater. 43, 151–154 (2014). https://doi.org/10.1007/s11664-013-2754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2754-1

Keywords

Navigation