Skip to main content
Log in

Transport and Mechanical Properties of High-ZT Mg2.08Si0.4−x Sn0.6Sb x Thermoelectric Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mg2(Si,Sn) compounds are promising candidate low-cost, lightweight, nontoxic thermoelectric materials made from abundant elements and are suited for power generation applications in the intermediate temperature range of 600 K to 800 K. Knowledge on the transport and mechanical properties of Mg2(Si,Sn) compounds is essential to the design of Mg2(Si,Sn)-based thermoelectric devices. In this work, such materials were synthesized using the molten-salt sealing method and were powder processed, followed by pulsed electric sintering densification. A set of Mg2.08Si0.4−x Sn0.6Sb x (0 ≤ x ≤ 0.072) compounds were investigated, and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si0.364Sn0.6Sb0.036. The high ZT is attributed to a high electrical conductivity in these samples, possibly caused by a magnesium deficiency in the final product. The mechanical response of the material to stresses is a function of the elastic moduli. The temperature-dependent Young’s modulus, shear modulus, bulk modulus, Poisson’s ratio, acoustic wave speeds, and acoustic Debye temperature of the undoped Mg2(Si,Sn) compounds were measured using resonant ultrasound spectroscopy from 295 K to 603 K. In addition, the hardness and fracture toughness were measured at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton, FL: CRC Press, 1995).

    Book  Google Scholar 

  2. J. Yang, ICT 2005 24th International Conference on Thermoelectrics, (2005), p. 170.

  3. B.C. Blanke, J.H. Birden, K.C. Jordan, and E.L. Murphy, Report No. MLM-11271960.

  4. R.J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca-Tasciuc, and G. Ramanath, Nat. Mater. 11, 233 (2012).

    Article  Google Scholar 

  5. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  6. V. Zaitsev, E. Tkalenko, and E. Nikitin, Fiz Tverd Tela 11, 3584 (1969).

    Google Scholar 

  7. T.J. Zhu, Y.Q. Cao, Q. Zhang, and X.B. Zhao, J. Electron. Mater. 39, 1990 (2009).

    Article  Google Scholar 

  8. Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, ICT ‘06. 25th International Conference on Thermoelectrics (2006), p. 406.

  9. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  10. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  11. W. Liu, X. Tang, H. Li, J. Sharp, X. Zhou, and C. Uher, Chem. Mater. 23, 5256 (2011).

    Article  Google Scholar 

  12. H.L. Gao, T.J. Zhu, X.X. Liu, L.X. Chen, and X.B. Zhao, J. Mater. Chem. 21, 5933 (2011).

    Article  Google Scholar 

  13. M. Søndergaard, M. Christensen, K.A. Borup, H. Yin, and B.B. Iversen, J. Electron. Mater. 42, 1417 (2013).

    Article  Google Scholar 

  14. S.S. Manson, Thermal Stress and Low-Cycle Fatigue (New York: McGraw-Hill, 1966).

    Google Scholar 

  15. E.D. Case, Thermomechanical Fatigue and Fracture, ed. M.H. Alibadi (Southampton: WIT, 2002),

    Google Scholar 

  16. L.G. Zhao, T.J. Lu, and N.A. Fleck, J. Mech. Phys. Solids 48, 867 (2000).

    Article  Google Scholar 

  17. Z.C. Olek, The Finite Element Method for Solid and Structural Mechanics (Boston: Butterworth-Heinemann, 2005).

    Google Scholar 

  18. V.N. Kaliakin, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods (New York: Marcel Dekker, 2002).

    Google Scholar 

  19. F. Ren, E.D. Case, E.J. Timm, and H.J. Schock, J. Alloys Compd. 455, 340 (2008).

    Article  Google Scholar 

  20. J.B. Wachtman, W.R. Cannon, and M.J. Matthewson, Mechanical Properties of Ceramics (New York: Wiley, 2009).

    Book  Google Scholar 

  21. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  22. I. Berkun, S.N. Demlow, N. Suwanmonkha, T.P. Hogan, and T.A. Grotjohn, 2012 MRS Fall Meeting Proceedings, (Boston, MA, 2012).

  23. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  Google Scholar 

  24. J.L.S.A. Migliori, Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation (New York: Academic, 1997).

    Google Scholar 

  25. J.E. Ni, E.D. Case, K.N. Khabir, R.C. Stewart, C.-I. Wu, T.P. Hogan, E.J. Timm, S.N. Girard, and M.G. Kanatzidis, Mater. Sci. Eng. B 170, 58 (2010).

    Article  Google Scholar 

  26. R.D. Schmidt, J.E. Ni, E.D. Case, J.S. Sakamoto, D.C. Kleinow, B.L. Wing, R.C. Stewart, and E.J. Timm, J. Alloys Compd. 504, 303 (2010).

    Article  Google Scholar 

  27. R.D. Schmidt, E.D. Case, J.E. Ni, J.S. Sakamoto, R.M. Trejo, and E. Lara-Curzio, Philos. Mag. 92, 727 (2012).

    Article  Google Scholar 

  28. L.D. Landau and E.M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Oxford: Pergamon, 1980).

    Google Scholar 

  29. M.I. Fedorov, V.K. Zaitsev, and M. V. Vedernikov, ICT ‘06. 25th International Conference on Thermoelectrics (2006), p. 111.

  30. G.N. Isachenko, V.K. Zaĭtsev, M.I. Fedorov, A.T. Burkov, E.A. Gurieva, P.P. Konstantinov, and M.V. Vedernikov, Phys. Solid State 51, 1796 (2009).

    Article  Google Scholar 

  31. G.D. Mahan, Solid State Physics, ed. E. Henry and S. Frans (Edinburgh: Academic, 1997),

    Google Scholar 

  32. M.I. Fedorov, D.A. Pshenay-Severin, V.K. Zaitsev, S. Sano and M.V. Vedernikov, Twenty-second International Conference on Thermoelectrics, (2003).

  33. M.I. Fedorov, The 5th European Conference on Thermoelectrics, (Odessa House of Scientists, Odessa, Ukraine, 2007).

  34. G.A. Slack and M.A. Hussain, J. Appl. Phys. 70, 25 (1991).

    Article  Google Scholar 

  35. T. Dasgupta, C. Stiewe, R. Hassdorf, A.J. Zhou, L. Boettcher, and E. Mueller, Phys. Rev. B 83, 235207 (2011).

    Article  Google Scholar 

  36. Z. Du, T. Zhu, Y. Chen, J. He, H. Gao, G. Jiang, T.M. Tritt, and X. Zhao, J. Mater. Chem. 22, 6838 (2012).

    Article  Google Scholar 

  37. R. Franz and G. Wiedemann, Annalen der Phys. 165, 497 (1853).

    Article  Google Scholar 

  38. R.W. Keyes, Phys. Rev. 115, 564 (1959).

    Article  Google Scholar 

  39. J. Tobola, S. Kaprzyk, and H. Scherrer, J. Electron. Mater. 39, 2064 (2010).

    Article  Google Scholar 

  40. N.F. Mottt and E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford: Clarendon, 1971).

    Google Scholar 

  41. V. Milekhine, M.I. Onsøien, J.K. Solberg, and T. Skaland, Intermetallics 10, 743 (2002).

    Article  Google Scholar 

  42. R.D. Schmidt, E.D. Case, J. Giles III, J.E. Ni, and T.P. Hogan, J. Electron. Mater. 41, 1210 (2012).

    Article  Google Scholar 

  43. Z.W. Huang, Y.H. Zhao, H. Hou, and P.D. Han, Phys. B 407, 1075 (2012).

    Article  Google Scholar 

  44. W.B. Whitten, P.L. Chung, and G.C. Danielson, J. Phys. Chem. Solids 26, 49 (1965).

    Article  Google Scholar 

  45. F. Ren, E.D. Case, E.J. Timm, and H.J. Schock, Philos. Mag. 87, 4907 (2007).

    Article  Google Scholar 

  46. G.H. Li, H.S. Gill, and R.A. Varin, Metall. Trans. A 24, 2383 (1993).

    Article  Google Scholar 

  47. B. Kim, J. Jeon, K. Park, B. Park, Y. Park, and I. Park, Arch. Mater. Sci. Eng. 94, 94 (2008).

    Google Scholar 

  48. F. Ren, B.D. Hall, J.E. Ni, E.D. Case, J. Sootsman, M.G. Kanatzidis, E. Lara-Curzio, R.M. Trejo, and E.J. Timm, Mater. Res. Soc. Symp. Proc. 1044, 121 (2008).

    Google Scholar 

  49. L. Zhang, G. Rogl, A. Grytsiv, S. Puchegger, J. Koppensteiner, F. Spieckermann, H. Kabelka, M. Reinecker, P. Rogl, W. Schranz, M. Zehetbauer, and M.A. Carpenter, Mater. Sci. Eng. B 170, 26 (2010).

    Article  Google Scholar 

  50. X. Fan, E.D. Case, X. Lu, and D.T. Morelli, J. Mater. Sci. 48, 7540 (2013).

    Article  Google Scholar 

  51. F. Ren, E.D. Case, J.R. Sootsman, M.G. Kanatzidis, H. Kong, C. Uher, E. Lara-Curzio, and R.M. Trejo, Acta Mater. 56, 5954 (2008).

    Article  Google Scholar 

  52. R.D. Schmidt, E.D. Case, G.J. Lehr, and D.T. Morelli, Intermetallics 35, 15 (2013).

    Article  Google Scholar 

  53. J.B. Wachtman Jr, W.E. Tefft, D.G. Lam Jr, and C.S. Apstein, Phys. Rev. 122, 1754 (1961).

    Article  Google Scholar 

  54. Y.P. Varshni, Phys. Rev. B 2, 3952 (1970).

    Article  Google Scholar 

  55. J.M. Jackson, S.V. Sinogeikin, and J.D. Bass, Phys. Earth Planet. Inter. 161, 1 (2007).

    Article  Google Scholar 

  56. L.C. Davis, W.B. Whitten, and G.C. Danielson, J. Phys. Chem. Solids 28, 439 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Hogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, P., Berkun, I., Schmidt, R.D. et al. Transport and Mechanical Properties of High-ZT Mg2.08Si0.4−x Sn0.6Sb x Thermoelectric Materials. J. Electron. Mater. 43, 1790–1803 (2014). https://doi.org/10.1007/s11664-013-2865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2865-8

Keywords

Navigation