Skip to main content
Log in

Power Factor Enhancement by Inhomogeneous Distribution of Dopants in Two-Phase Nanocrystalline Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we describe a novel idea that allows for high thermoelectric power factors in two-phase materials that are heavily doped with an inhomogeneous distribution of dopants. We show that a concurrent increase of the electrical conductivity and Seebeck coefficient and a consequent increase of the power factor can be achieved in such systems. To explain the concept, we employ a semiclassical one-dimensional model that considers both electron and phonon transport through a series connection of two-phases of the material. We discuss microscopic characteristics of the material and the formation of the two phases (grains and grain boundaries in our case) by the inhomogeneous distribution of dopants in the polycrystalline material. Our theoretical investigation reveals that: (1) the improvement in the Seebeck coefficient can be attributed to carrier filtering due to the energy barriers at the grain boundaries, and to the difference in the lattice thermal conductivity of the grains and grain boundaries, and (2) the improvement in the electrical conductivity is a result of a high Fermi level in the grains. This allows high energy carriers to contribute to transport, which increases the impurity scattering limited mean-free-path, and increases the conductivity in the grains and thus in the whole material. Such an unexpected concurrent increase of the electrical conductivity and the Seebeck coefficient was recently observed in heavily boron-doped polycrystalline silicon of grain sizes <100 nm in which a silicon-boride phase is formed around the grain boundaries. We provide a simple 1D model that explains the behavior of this system, indicating processes that can take place in heavily doped nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Narducci, E. Selezneva, A. Arcari, G.F. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, MRS Proceedings, 1314, mrsf10-1314-ll05-16 (2011). doi:10.1557/opl.2011.511.

  2. D. Narducci, E. Selezneva, G.F. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, Proceedings of the 8th European Conference on Thermoelectrics (22–24 September, 2010, Como, Italy), pp. 141–146.

  3. D. Narducci, E. Selezneva, G.F. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).

    Article  Google Scholar 

  4. D. Narducci, E. Selezneva, G.F. Cerofolini, S. Frabboni, and G. Ottaviani, AIP Conf. Proc. 1449, 311 (2012). doi:10.1063/1.4731559.

    Article  Google Scholar 

  5. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597–602 (2001).

    Article  Google Scholar 

  7. L.D. Zhao, S.H. Lo, J.Q. He, L. Hao, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476–20487 (2011).

    Article  Google Scholar 

  8. A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A.G. III, and J.R. Heath, Nature 451, 168–171 (2008).

    Article  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163–168 (2008).

    Article  Google Scholar 

  10. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279–4283 (2010).

    Article  Google Scholar 

  11. K. Nielsch, J. Bachmann, J. Kimling, and H. Boettner, Adv. Energy Mater. 1, 713–731 (2011).

    Article  Google Scholar 

  12. C.J. Vineis, A. Shakouri, A. Majumdar, and M.C. Kanatzidis, Adv. Mater. 22, 3970–3980 (2010).

    Article  Google Scholar 

  13. F. Song, L. Wu, and S. Liang, Nanotechnology 23, 085401 (2012).

    Article  Google Scholar 

  14. Y. Yang, D.K. Taggart, M.H. Cheng, J.C. Hemminger, and R.M. Penner, J. Phys. Chem. Lett. 1, 3004–3011 (2010).

    Article  Google Scholar 

  15. W. Xu, Y. Shi, and H. Hadim, Nanotechnology 21, 395303 (2010).

    Article  Google Scholar 

  16. H. Ohta, et al., Nat. Mater. 6, 129–134 (2007).

    Article  Google Scholar 

  17. H. Ikeda and F. Salleh, Appl. Phys. Lett. 96, 012106 (2010).

    Article  Google Scholar 

  18. C.M. Jaworski, V. Kulbachinskii, and J.P. Heremans, Phys. Rev. B 80, 125208 (2009).

    Article  Google Scholar 

  19. D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).

    Article  Google Scholar 

  20. N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).

    Article  Google Scholar 

  21. T.J. Scheidemantel, C.A. Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).

    Article  Google Scholar 

  22. R. Kim, S. Datta, and M.S. Lundstrom, J. Appl. Phys. 105, 034506 (2009).

    Article  Google Scholar 

  23. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge: Cambridge University Press, 2000).

    Book  Google Scholar 

  24. H. Kosina and G.K. Grujin, Solid State Electron. 42, 331–338 (1998).

    Article  Google Scholar 

  25. A.T. Ramu, L.E. Cassels, N.H. Hackman, H. Lu, J.M.O. Zide, and J.E. Bowels, J. Appl. Phys. 107, 083707 (2010).

    Article  Google Scholar 

  26. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).

    Article  Google Scholar 

  27. Ioffe Physiotechnical Institute, Physical Properties of Semiconductors (St. Petersburg, Russia: Russian Federation, 1998–2001), http://www.ioffe.ru/SVA/.

  28. G. Masetti, M. Severi, and S. Solmi, IEEE Trans. Electr. Dev. 30, 764 (1983).

    Article  Google Scholar 

  29. J.W. Orton and M.J. Powell, Rep. Prog. Phys. 43, 1263 (1980).

    Article  Google Scholar 

  30. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975).

    Article  Google Scholar 

  31. F.V. Farmakis, J. Brini, G. Kamarinos, C.T. Angelis, C.A. Dimitriadis, and M. Miyasaka, IEEE Trans. Electr. Dev. 48, 701 (2001).

    Article  Google Scholar 

  32. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225–2230 (2011).

    Article  Google Scholar 

  33. Y. Nishio and T. Hirano, Jpn. J. Appl. Phys. 36, 170–174 (1997).

    Article  Google Scholar 

  34. R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).

    Article  Google Scholar 

  35. M. Lundstrom, Electr. Dev. Lett. 22, 293–295 (2001).

    Article  Google Scholar 

  36. J.M. Ziman, Electrons and Phonons (Cambridge: Cambridge University Press, 2001).

    Book  Google Scholar 

  37. P. Chantrenne, J.L. Barrat, X. Blase, and J.D. Gale, J. Appl. Phys. 97, 104318 (2005).

    Article  Google Scholar 

  38. M.G. Holland, Phys. Rev. 134, A471 (1964).

    Article  Google Scholar 

  39. S. Duguay, A. Colin, D. Mathiot, P. Morin, and D. Blavette, J. Appl. Phys. 108, 034911 (2010).

    Article  Google Scholar 

  40. S. Duguay, T. Philippe, F. Cristiano, and D. Blavette, Appl. Phys. Lett. 97, 242104 (2010).

    Article  Google Scholar 

  41. O.C. Miredin, F. Cristiano, P.-F. Fazzini, D. Mangelinck, and D. Blavette, Thin Solid Films 534, 62–65 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xanthippi Zianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neophytou, N., Zianni, X., Kosina, H. et al. Power Factor Enhancement by Inhomogeneous Distribution of Dopants in Two-Phase Nanocrystalline Systems. J. Electron. Mater. 43, 1896–1904 (2014). https://doi.org/10.1007/s11664-013-2898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2898-z

Keywords

Navigation