Skip to main content
Log in

High Temperature Thermoelectric Device Concept Using Large Area PN Junctions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A new high temperature thermoelectric device concept using large area nanostructured silicon p-type and n-type (PN) junctions is presented. In contrast to conventional thermoelectric generators, where the n-type and p-type semiconductors are connected electrically in series and thermally in parallel, we experimentally demonstrate a device concept in which a large area PN junction made from highly doped densified silicon nanoparticles is subject to a temperature gradient parallel to the PN interface. In the proposed device concept, the electrical contacts are made at the cold side eliminating the hot side substrate and difficulties that go along with high temperature electrical contacts. This concept allows temperature gradients greater than 300 K to be experimentally applied with hot side temperatures larger than 800 K. Electronic properties of the PN junctions and power output characterizations are presented. A fundamental working principle is discussed using a particle network model with temperature and electric fields as variables, and which considers electrical conductivity and thermal conductivity according to Fourier’s law, as well as Peltier and Seebeck effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  Google Scholar 

  2. P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010).

    Article  Google Scholar 

  3. A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011).

    Article  Google Scholar 

  4. M. Wagner, G. Span, S. Holzer, and T. Grasser, Semicond. Sci. Technol. 22, S173 (2007).

    Article  Google Scholar 

  5. G. Span, M. Wagner, S. Holzer, and T. Grasser, 25th International Conference on Thermoelectrics (2006), p. 23.

  6. G. Span, M. Wagner, T. Grasser, and L. Holmgren, Phys. Status Solidi—Rapid Res. Lett. 1, 241 (2007).

    Article  Google Scholar 

  7. M. Wagner, G. Span, S. Holzert, and T. Grassert, International Conference on Simulation of Semiconductor Processes and Devices (2006), p. 397.

  8. J.Y. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, Mater. Sci. Eng. B 85, 34 (2001).

    Article  Google Scholar 

  9. P.L. Hagelstein and Y. Kucherov, Appl. Phys. Lett. 81, 559 (2002).

    Article  Google Scholar 

  10. R. Chavez, A. Becker, V. Kessler, M. Engenhorst, N. Petermann, H. Wiggers, G. Schierning, and R. Schmechel, Mater. Res. Soc. 1543 (2013).

  11. A. Becker, R. Chavez, N. Petermann, G. Schierning, and R. Schmechel, J. Electron. Mater. 42, 2297 (2013).

    Google Scholar 

  12. C.B. Vining, Mater. Res. Soc. Symp. 3 (1997).

  13. C. Goupil, W. Seifert, K. Zabrocki, E. Müller, and G.J. Snyder, Entropy 13, 1481 (2011).

    Article  Google Scholar 

  14. D. Fu, A. Levander, R. Zhang, J. Ager, and J. Wu, Phys. Rev. B 84, 1 (2011).

    Google Scholar 

  15. T. Noguchi, 16th International Conference on Thermoelectrics. (1997).

  16. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt, C. Hecht, C. Schulz, and H. Wiggers, J.␣Phys. D 44, 174034 (2011).

    Article  Google Scholar 

  17. A. Becker, G. Schierning, R. Theissmann, M. Meseth, and N. Benson, J. Appl. Phys. 111, 054320 (2012).

    Article  Google Scholar 

  18. M. Meseth, P. Ziolkowski, G. Schierning, R. Theissmann, N. Petermann, H. Wiggers, N. Benson, and R. Schmechel, Scr. Mater. 67, 265 (2012).

    Article  Google Scholar 

  19. V. Kessler, M. Dehnen, R. Chavez, M. Engenhorst, J.␣Stoetzel, N. Petermann, K. Hesse, T. Huelser, M. Spree, G. Schierning, R. Schmechel, Mater. Res. Soc. 1553 (2013).

  20. S. Dongaonkar, J.D. Servaites, G.M. Ford, S. Loser, J. Moore, R.M. Gelfand, H. Mohseni, H.W. Hillhouse, R. Agrawal, M.A. Ratner, T.J. Marks, M.S. Lundstrom, and M.A. Alam, J. Appl. Phys. 108, 124509 (2010).

    Article  Google Scholar 

  21. L.A. Bitzer, M. Meseth, N. Benson, and R. Schmechel, Rev. Sci. Instrum. 84, 023707 (2013).

    Article  Google Scholar 

  22. L.-D.P. Lopez, S. Dilhaire, S. Grauby, M.A. Salhi, Y. Ezzahri, W. Claeys, and J.-C. Batsale, J. Phys. D 38, 1489 (2005).

    Article  Google Scholar 

  23. V. Kessler, D. Gautam, T. Hülser, M. Spree, R. Theissmann, M. Winterer, H. Wiggers, G. Schierning, and R. Schmechel, Adv. Eng. Mater. 15, 379 (2012).

    Google Scholar 

  24. G. Schierning, R. Theissmann, N. Stein, N. Petermann, A. Becker, M. Engenhorst, V. Kessler, M. Geller, A. Beckel, H. Wiggers, and R. Schmechel, J. Appl. Phys. 110, 113515 (2011).

    Article  Google Scholar 

  25. J. Martin, T. Tritt, and C. Uher, J. Appl. Phys. 108, 121101 (2010).

    Article  Google Scholar 

  26. K. Pipe, R. Ram, and A. Shakouri, Phys. Rev. B 66, 1 (2002).

    Article  Google Scholar 

  27. I. Lashkevych and Y.G. Gurevich, Int. J. Thermophys. 32, 1086 (2011).

    Article  Google Scholar 

  28. Y.G. Gurevich and J.E. Velázquez-Pérez, J. Appl. Phys. 114, 033704 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Nils Petermann for producing the nanoparticles and Gerhard Span for the useful discussions. Financial support in the frame of a young investigator Grant by the Ministry for innovation, science and research of the State North Rhine Westphalia in Germany is gratefully acknowledged. Further, financial support by the German Research Foundation within the priority program 1386 on nanostructured thermoelectrics is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chavez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavez, R., Angst, S., Hall, J. et al. High Temperature Thermoelectric Device Concept Using Large Area PN Junctions. J. Electron. Mater. 43, 2376–2383 (2014). https://doi.org/10.1007/s11664-014-3073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3073-x

Keywords

Navigation