Skip to main content
Log in

Photoassisted Chemically Deposited Tin Sulfide Thin Films Based on Two Different Chemical Formulations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photoassisted chemical deposition is a customized form of chemical bath deposition where the reaction is carried out in the presence of ultraviolet light. Deposition of tin sulfide films was carried out by this method using two different chemical baths. The as-prepared samples from the acetone bath were crystalline, exhibiting the orthorhombic structure of the Sn2S3 phase, but those from the glacial acetic acid bath were amorphous. The crystallinity of the films was improved on annealing. The deposition rate was found to depend on the pH of the bath and the chemical formulation. Distinct morphology was obtained for as-grown films. The films from the acetone bath were compact with uniform morphology of needle-shaped grains having equal diameters and lengths. The films from the glacial acetic acid bath were similar, with smaller needles. The high absorption coefficients of as-grown and annealed films show their potential application as absorber layers in photovoltaic devices. The refractive index was estimated from the reflectance of the films. The estimated activation energies of the as-prepared films from the acetone and glacial acetic acid baths were 0.4 eV and 0.46 eV, whereas those of the annealed samples were 0.2 eV and 0.44 eV, respectively. The activation energy was found to decrease for annealed films due to a decrease in trap sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Amalraj, C. Sanjeeviraja, et al., J. Cryst. Growth 234, 683 (2002).

    Article  Google Scholar 

  2. B. Ghosh, M. Das, et al., Appl. Surf. Sci. 254, 6436 (2008).

    Article  Google Scholar 

  3. J.P. Singh and R.K. Bedi, Thin Solid Films 199, 9 (1991).

    Article  Google Scholar 

  4. K.T. Ramakrishna Reddy and P. Purandhara Reddy, Mater. Lett. 56, 108 (2002).

    Article  Google Scholar 

  5. T.H. Sajeesh, A.R. Warrier, et al., Thin Solid Films 518, 4370 (2010).

    Article  Google Scholar 

  6. A. Akkari, C. Guasch, and N. Kamoun-Turki, J. Alloys Compd. 4901, 80 (2010).

    Google Scholar 

  7. P.P. Hankare, A.V. Jadhav, et al., J. Alloys Compd. 463, 581 (2008).

    Article  Google Scholar 

  8. M.T.S. Nair and P.K. Nair, Semicond. Sci. Technol. 6, 132 (1991).

    Article  Google Scholar 

  9. D. Avellanede, M.T.S. Nair, and P.K. Nair, Thin Solid Films 517, 2500 (2009).

    Article  Google Scholar 

  10. D. Avellanede, G. Deldado, et al., Thin Solid Films 515, 5771 (2007).

    Article  Google Scholar 

  11. C. Gao and H. Shan, Thin Solid Films 520, 3523 (2012).

    Article  Google Scholar 

  12. N. Koteeswara Reddy and K.T. Ramakrishna Reddy, Mater. Chem. Phys. 102, 13 (2007).

    Article  Google Scholar 

  13. H. Benhaj Salah, H. Bouzouita, and B. Rezig, Thin Solid Films 480, 439 (2005).

    Article  Google Scholar 

  14. Y. Jayasree, U. Chalapathi, et al., Appl. Surf. Sci. 258, 2732 (2012).

    Article  Google Scholar 

  15. B. Ghosh, M. Das, et al., Appl. Surf. Sci. 254, 6436 (2008).

    Article  Google Scholar 

  16. T.L. Remadevi and A.C. Dhanya, Arch. Phys. Res. 2, 128 (2011).

    Google Scholar 

  17. P.K. Nair and M.T.S. Nair, Sol. Energy Mater. Sol. Cells 52, 313 (1998).

    Article  Google Scholar 

  18. E. Guneri, C. Ulutaset, et al., Appl. Surf. Sci. 257, 1189 (2010).

    Article  Google Scholar 

  19. B.D. Cullity, Elements of X-ray Diffraction (Reading, MA: Addison-Wesley, 1978).

    Google Scholar 

  20. B.G. Jayaprakash, A. Amalarani, et al., Chalcogenide Lett. 6, 455 (2009).

    Google Scholar 

  21. E.R. Shaaban, M.S. Abd, E.L. Sadek, M. El-Hagary, and I.S. Yahia, Phys. Scr. 86, 015702 (2012).

    Article  Google Scholar 

  22. B. Lambert and I.N. Levine, Physical Chemistry, 4th ed. (New York: McGraw-Hill, 1995).

    Google Scholar 

  23. R. Bayon, R. Musembi, et al., Sol. Energy Mater. Sol. Cells 89, 13 (2005).

    Article  Google Scholar 

  24. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum, 1974).

    Book  Google Scholar 

  25. F.N. Dultsev, L.L. Vasilieva, et al., Thin Solid Films 510, 255 (2006).

    Article  Google Scholar 

  26. R. Mariappan, T. Mahalingam, and V. Ponnuswamy, Optik 122, 2216–2219 (2011).

    Article  Google Scholar 

  27. M. Devika, N. Reddy, et al., Semicond. Sci. Technol. 211, 125 (2006).

    Google Scholar 

  28. S. Varghese and M. Iype, Orient. J. Chem. 27, 265 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Dhanya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remadevi, T.L., Dhanya, A.C. & Deepa, K. Photoassisted Chemically Deposited Tin Sulfide Thin Films Based on Two Different Chemical Formulations. J. Electron. Mater. 43, 3984–3992 (2014). https://doi.org/10.1007/s11664-014-3325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3325-9

Keywords

Navigation