Skip to main content
Log in

Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣this study, we observed a reduction in dislocation density with good surface morphology due to proper design of the TCA system, low annealing temperature, and large number of annealing cycles. The ampoule containing the samples is placed in direct contact with the graphite heating tube which helps in increasing the heating and cooling rates of the annealing cycle. To maintain Hg overpressure, Hg is placed in the sample holder, instead of in the ampoule to avoid Hg condensation. The best results were obtained by cycling the annealing temperature between 290°C and 350°C. Anneals were performed by using 32, 64, 128 and 256 cycles. We obtained an etch pit density (EPD) as low as 1 × 106 cm−2. Lower EPD was not achieved either by increasing annealing temperature or number of annealing cycles. Through secondary ion mass spectroscopy analysis, we observed very little inter-diffusion of Cd across the MCT/CdTe interface for the 128 cycle annealing. These results show promise in bridging the gap in the device performance between the MCT material grown on CdTe/Si and CdZnTe substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Lawson, S. Nielsen, E. Putley, and A. Young, J. Phys. Chem. Solids 9, 325 (1959).

    Article  Google Scholar 

  2. G. Brill, Y. Chen, P. Wijewarnasuriya, and N. Dhar, in SPIE Infrared Systems and Photoelectric Technology IV, Adelphi, MD, 2009.

  3. S.-W. Sun, C.-H. Zhou, H.-X. Yu, C. Xu, F.-F. Sheng, S.-Y. Sui, J.-R. Yang, and L. He, in Proceedings SPIE: ISPDI 2013, Beijing, 2013.

  4. J. Benson, L. Bubulac, P. Smith, R. Jacobs, J. Markunaas, M. Jaime-Vasques, L. Almeida, A. Stoltz, J. Arias, G. Brill, Y. Chen, P. Wijewarnasuriya, S. Farrell, and U. Lee, J. Electron. Mater. 41, 2971 (2012).

    Article  Google Scholar 

  5. M. Carmody, A. Yulius, D. Edwall, D. Lee, E. Piquette, R. Jacobs, D. Benson, A. Stoltz, J. Markunas, A. Almeida, and J. Arias, J. Electron. Mater. 41, 2719 (2012).

    Article  Google Scholar 

  6. L. Bubulac, J. Benson, R. Jacobs, A. Stoltz, M. Jaime- Vasquez, L. Almeida, A. Wang, L. Wang, R. Hellmer, T. Golding, J. Dinan, M. Carmody, P. Wijewarnasuriya, M. Lee, M. Vilela, J. Peterson, S. Johnson, and D. Lofgreen, J. Electron. Mater. 40, 280 (2011).

    Article  Google Scholar 

  7. J.-P. Faurie, L.A. Almeida, Y. Chen, R. Sporken, and S. Sivananthan, in SPIE Proceedings 2685, 1996.

  8. A. Diaz, S.A. Quinones, and D. Ferrer, J. Electron. Mater. 42, 1092 (2013).

    Article  Google Scholar 

  9. Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, and N. Dhar, J. Crystal Growth 310, 5303 (2008).

    Article  Google Scholar 

  10. W. Wang, L. Chen, R. Gu, C. Shen, X. Fu, Y. Guo, G. Wang, F. Yang, and L. He, in Proceedings SPIE 8419, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy, Xiamen, China, 2012.

  11. S. Johnson, D. Rhiger, J. Rosbeck, J. Peterson, S. Taylor, and M. Boyd, J. Vac. Sci. Tech. B 10, 1499 (1992).

    Article  Google Scholar 

  12. J. Benson, S. Farrell, G. Brill, Y. Chen, P. Wijewarnasuriay, L. Bubulac, P. Smith, R. Jacobs, J. Markunas, M. Jaime-Vasquez, L. Almeida, A. Stoltz, U. Lee, M. Vilela, J. Peterson, S. Johnson, D. Lofgreen, and D. Rhiger, 40, 2011.

  13. S. Farrell, M. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, J. Benson, and K. Harris, J. Electron. Mater. 42, 3097 (2013).

    Article  Google Scholar 

  14. S. Farrell, G. Brill, Y. Chen, P. Wijewarnasuriya, M.V. Rao, N. Dhar, and K. Harris, J. Electron. Mater. 39, 43 (2009).

    Article  Google Scholar 

  15. M. Yamaguchi, M. Tachikawa, Y. Itoh, M. Sugo, and S. Kondo, J. Applied Phys. 68, 4518 (1990).

    Article  Google Scholar 

  16. P. Capper, J. Garland, S. Kasap, and A. Willoughby, Mercury Cadmium Telluride: Growth, Properties and Applications, Wiley Series in Materials for Electronic & Optoelectronic Applications, 2010.

  17. S. Farrell, M.V. Rao, G. Brill, Y. Chen, P. Wijewarnasuriya, N. Dhar, D. Benson, and K. Harris, J. Electron. Mater. 40, 1727 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Defense Advanced Research Projects Agency (DARPA) for funding through Army Research Office (ARO) contract #W911NF-11-2-0049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Simingalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simingalam, S., Brill, G., Wijewarnasuriya, P. et al. Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si. J. Electron. Mater. 44, 1321–1326 (2015). https://doi.org/10.1007/s11664-014-3542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3542-2

Keywords

Navigation