Skip to main content
Log in

Improved Photoresponse of Hybrid ZnO/P3HT Bilayered Photodetector Obtained Through Oriented Growth of ZnO Nanorod Arrays and the Use of Hole Injection Layer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report highly oriented one-dimensional (1-D) growth of zinc oxide (ZnO) nanorod arrays (NRA) which were later utilized to fabricate hybrid photodiodes having the typical photodiode configuration of indium tin oxide (ITO)/ZnO/poly(3-hexylthiophene) (P3HT)/Ag. These functional hybrid bilayered photodiodes were found to have high rectification ratio under dark conditions and demonstrated enhanced responsivity under light illumination. Further, we studied the effect of an intermediate electron blocking layer of poly(ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) on the photodiode characteristics and demonstrated ITO/ZnO/P3HT/PEDOT:PSS/Ag photodiodes, reporting very high rectification ratio and responsivity in this bilayered configuration. The observed results are explained on the basis of the increased surface area of contact between the ZnO nanorods and the P3HT, and also the efficient hole injection into the P3HT layer from the top Ag electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Hau, H.L. Yip, and A.K.Y. Jen, Polym. Rev. 50, 474 (2010).

    Article  Google Scholar 

  2. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Yu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 229, 189 (2001).

    Google Scholar 

  3. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, and Z.F. Ren, Nano Lett. 618, 1719 (2006).

    Article  Google Scholar 

  4. D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, and J.W.P. Hsu, Phys. Chem. C 111, 16640 (2007).

    Article  Google Scholar 

  5. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).

    Article  Google Scholar 

  6. T. Zhao, L. Liag, X. Wang, X. Fang, Y. Bando, and D. Golberg, Adv. Funct. Mater. 20, 4233 (2010).

    Article  Google Scholar 

  7. Y.Z. Tin, J.P. Wang, B.Q. Sun, J.C. Blakesley, and N.G. Greenhan, Nano Lett. 8, 1649 (2008).

    Article  Google Scholar 

  8. K. Bhargava and V. Singh, J. Comput. Electron. 13, 585 (2014).

    Article  Google Scholar 

  9. S.D. Oosterhout, M.M. Wienk, S.S. van Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, and R.A.J. Janssen, Nat. Mater. 8, 818 (2009).

    Article  Google Scholar 

  10. W.E. Mahmoud, J. Phys. D Appl. Phys. 42, 155502 (2009).

    Article  Google Scholar 

  11. V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, and K. Kaneto, Appl. Phys. Express 1, 021801 (2008).

    Article  Google Scholar 

  12. V. Singh, M. Yano, W. Takashima, and K. Kaneto, Jpn. J. Appl. Phys. 45, 534 (2006).

    Article  Google Scholar 

  13. T. Morita, V. Singh, S. Oku, S. Nagamatsu, W. Takashima, S. Hayase, and K. Kaneto, Jpn. J. Appl. Phys. 49, 041601 (2010).

    Article  Google Scholar 

  14. T. Morita, V. Singh, S. Nagamatsu, S. Oku, W. Takashima, and K. Kaneto, Appl. Phys. Express 2, 111502 (2009).

    Article  Google Scholar 

  15. V. Singh, A.K. Thakur, S.S. Pandey, W. Takashima, and K. Kaneto, Org. Electron. 9, 790 (2008).

    Article  Google Scholar 

  16. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009).

    Article  Google Scholar 

  17. I.A. Palani, K. Okazaki, D. Nakamura, K. Sakai, M. Higashihata, and T. Okada, Appl. Surf. Sci. 258, 3611 (2012).

    Article  Google Scholar 

  18. S. Baruah, Sci. Technol. Adv. Mater. 10, 013001 (2009).

    Article  Google Scholar 

  19. M. Guo, P. Diao, and S. Caib, J. Solid State Chem. 178, 1864 (2005).

    Article  Google Scholar 

  20. I.A. Palani, D. Nakamura, K. Okazaki, M. Higashihata, and T. Okada, Mater. Sci. Eng. B 176, 1526 (2011).

    Article  Google Scholar 

  21. K.J. Baeg, M. Binda, D. Natali, M. Caironi, and Y.Y. Noh, Adv. Mater. 25, 4267 (2013).

    Article  Google Scholar 

  22. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, and N.C. Greenham, Nano Lett. 8, 1649 (2008).

    Article  Google Scholar 

  23. Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kongb, and Y. Qian, Chem. Commun. 6, 712 (2004).

  24. J. Clark, J.F. Chang, F.C. Spano, R.H. Friend, and C. Silva, Appl. Phys. Lett. 94, 163306 (2009).

    Article  Google Scholar 

  25. Z. Yuan and Y. Ren, Physica E 48, 128 (2013).

    Article  Google Scholar 

  26. P.P. Boix, J. Ajuria, I. Etxebarria, R. Pacios, G.G. Belmonte, and J. Bisquert, J. Phys. Chem. Lett. 2, 407 (2011).

    Article  Google Scholar 

  27. R. Meier, C. Birkenstock, C.M. Palumbiny, and P.M. Buschbaum, Phys. Chem. Chem. Phys. 14, 15088 (2012).

    Article  Google Scholar 

  28. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, and J. Huang, Nat. Nanotech. 7, 798 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Bilgaiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilgaiyan, A., Dixit, T., Palani, I.A. et al. Improved Photoresponse of Hybrid ZnO/P3HT Bilayered Photodetector Obtained Through Oriented Growth of ZnO Nanorod Arrays and the Use of Hole Injection Layer. J. Electron. Mater. 44, 2842–2848 (2015). https://doi.org/10.1007/s11664-015-3712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3712-x

Keywords

Navigation