Skip to main content
Log in

Synthesis, Characterization, and Size Control of Zinc Sulfide Nanoparticles Capped by Poly(ethylene glycol)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc sulfide nanoparticles with controllable size were synthesized by chemical precipitation. Results from transmission electron microscopy and x-ray powder diffraction showed the samples were grown with the cubic phase. Particle size was varied by varying the molar ratio of zinc chloride to sodium sulfide in the presence of poly(ethylene glycol). The optical band gap was calculated on the basis of ultraviolet–visible spectroscopy and ranged from 4.13 to 4.31 eV depending on particle size. Surface passivation and adsorption of poly (ethylene glycol) on the nanoparticles was explained on the basis of Fourier-transform infrared measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.M. Jun, S.M. Lee, and J. Cheon, J. Chem. Soc. 123, 5150 (2001).

    Article  Google Scholar 

  2. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater Sci. 56, 175 (2011).

    Article  Google Scholar 

  3. X.S. Fang, U.K. Gautam, Y. Bando, and D. Golberg, J. Mater. Sci. Technol. 24, 520 (2008).

    Google Scholar 

  4. Y.F. Nicolau, M. Dupuy, and M. Bruuel, J. Electrochem. Soc. 137, 2915 (1998).

    Article  Google Scholar 

  5. R.N. Bhargava, D. Gallagher, X. Hong, and D. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  Google Scholar 

  6. B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachoune, and J.C. Bernecde, Mater. Chem. Phys. 68, 175 (2001).

    Article  Google Scholar 

  7. B. Bodo, P.K. Kalita, in Proceedings of AIP, Conf., proc. 1276, 31 (2010).

  8. M. Jayalakshmi and M.M. Rao, J. Power Sour. 157, 624 (2006).

    Article  Google Scholar 

  9. W. Park, J.S. King, C.W. Neff, C. Liddell, and C.J. Summers, Phys. Stat. Sol. 229, 949 (2002).

    Article  Google Scholar 

  10. F. Wei, G. Li, and Z. Zhang, Mater. Res. Bull. 40, 1402 (2005).

    Article  Google Scholar 

  11. H. Peng, B. Liuyang, Y. Lingjie, L. Jinlin, Y. Fangli, and C. Yunfa, Nanoscale Res. Lett. 4, 1047 (2003).

    Article  Google Scholar 

  12. U. Baishya and D. Sarkar, Int. J. Pure Appl. Phys. 49, 186 (2011).

    Google Scholar 

  13. G. Gopa, N.M. Kanti, P. Amitava, and C. Minati, Opt. Mater. 28, 1047 (2006).

    Article  Google Scholar 

  14. S.K. Mandal, S. Chaudhuri, and A.K. Pal, Thin Solid Films 350, 209 (1999).

    Article  Google Scholar 

  15. R. Yousefi and A.K. Zak, Mater. Sci. Semi. Process. 14, 170 (2011).

    Article  Google Scholar 

  16. R. Yousefi, M.R. Muhamad, and A.K. Zak, Curr. Appl. Phys. 11, 767 (2011).

    Article  Google Scholar 

  17. G. Li, L. Jiang, H. Peng, and B. Zhang, Mater. Lett. 62, 1881 (2008).

    Article  Google Scholar 

  18. S. Prabahar, N. Suryanarayanan, and D. Kathirvel, Chalcogenide Lett. 6, 577 (2009).

    Google Scholar 

  19. B. Bhattacharjee, D. Ganguli, S. Chaudhuri, and A.K. Pal, Mater. Chem. Phys. 78, 372 (2003).

    Article  Google Scholar 

  20. H.Y. Lu, S.Y. Chu, and S.S. Tan, J. Cryst. Growth 269, 385 (2004).

    Article  Google Scholar 

  21. Y. Ni, G. Yin, J. Hong, and Z. Xua, Mater. Res. Bull. 39, 1967 (2004).

    Article  Google Scholar 

  22. J.F. Xu, W. Ji, J.Y. Lin, S.H. Tang, and Y.W. Du, Appl. Phys. A 66, 639 (1998).

    Article  Google Scholar 

  23. R.M. Tejos, G.B. Rolón, R.D. Río, and G. Cabello, J. Chil. Chem. Soc. 52, 1257 (2007).

    Article  Google Scholar 

  24. E. Ivanov and C. Suryanarayana, J. Mater. Synth. Process. 8, 235 (2000).

    Article  Google Scholar 

  25. P. Balaz, P. Pourghahramani, E. Dutkova, E. Turianicova, J. Kovac, and A. Satka, Phys. Stat. Sol. C 5, 3756 (2008).

    Article  Google Scholar 

  26. D. Jiang, L. Cao, G. Su, H. Qu, and D. Sun, Appl. Surf. Sci. 253, 9330 (2007).

    Article  Google Scholar 

  27. L.X. Cao, J.H. Zhang, S.L. Ren, and S.H. Huang, Appl. Phys. Lett. 80, 4300 (2002).

    Article  Google Scholar 

  28. T.T.Q. Hoa, N.D. The, S.M. Vitie, N.H. Nam, L.V. Vu, T.D. Canh, and N.N. Long, Opt. Mater. 33, 308 (2011).

    Article  Google Scholar 

  29. Y. Tong, Z. Jiang, C. Wang, Y. Xin, Z. Huang, S. Liu, and C. Li, Mater. Lett. 62, 3385 (2008).

    Article  Google Scholar 

  30. R. Seoudi, A.A. Shabaka, M. Kamal, E.M. Abdelrazek, and W. Eisa, Physica E 45, 47 (2012).

    Article  Google Scholar 

  31. J.P. Borah, J. Barman, and K.C. Sarma, Chalcogenide Lett. 5, 201 (2008).

    Google Scholar 

  32. H. Hudlikar, S. Joglekar, M. Dhaygude, and K. Kodam, J. Nanopart. Res. 14, 865 (2012).

    Article  Google Scholar 

  33. C.N.R. Rao, A. Muller, and A.K. Cheetham, The Chemistry of Nanomaterials (Willey-VCH (Weinheim: Verlag Gmbtt and Co. KgaA, 2005).

    Google Scholar 

  34. T.T.Q. Hoa, L.V. Vu, T.D. Canh, and N.N. Long, J. Phys. 187, 01208 (2009).

    Google Scholar 

  35. M. Moffit and A. Eisenberg, Chem. Mater. 7, 1178 (1995).

    Article  Google Scholar 

  36. A.P. Alivisatos, Nature 271, 933 (1996).

    Google Scholar 

  37. M.K. Naskar, A. Patra, and M. Chatterjee, J. Colloid Interface Sci. 297, 271 (2006).

    Article  Google Scholar 

  38. J.F. Suyver, S.F. Wuister, J.J. Kelly, and A. Meijerink, Nano Lett. 1, 429 (2001).

    Article  Google Scholar 

  39. R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, Colloids Surf. A 220, 151 (2003).

    Article  Google Scholar 

  40. L.E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  Google Scholar 

  41. W. Chen, Z.G. Wang, Z.J. Lin, Y. Xu, and L.Y. Lin, J. Mater. Sci. Technol. 13, 397 (1997).

    Google Scholar 

  42. L.E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  Google Scholar 

  43. R. Rossetti, J.L. Ellison, J.M. Gibson, and L.E. Brus, J. Chem. Phys. 80, 4464 (1984).

    Article  Google Scholar 

  44. P.E. Lippens and M.L. Lannoo, Phys. Rev. B 39, 10935 (1989).

    Article  Google Scholar 

  45. H. Xian, G.Z. Zhong, S. Tanaka, and H. Kobayashi, Jpn. J. Appl. Phys. 28, L1019 (1989).

    Article  Google Scholar 

  46. A.I. Ekimov, L. Efros, and A.A. Onuschenko, Solid State Commun. 56, 921 (1985).

    Article  Google Scholar 

  47. S. Tunc and O. Duman, Colloids Surf. A: Physicochem. Eng. Asp. 37, 93 (2008).

    Article  Google Scholar 

  48. D. Philip, Spectrosc. Acta A Mol. Biomol. Spectrosc. 75, 1078 (2010).

    Article  Google Scholar 

  49. D. Philip, Spectroc. Acta A Mol. Biomol. Spectrosc. 73, 650 (2009).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Institute of Scientific Research and Revival of Islamic Heritage, Umm Al-Qura University (Project ID 43305026), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Lashin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allehyani, S.H.A., Seoudi, R., Said, D.A. et al. Synthesis, Characterization, and Size Control of Zinc Sulfide Nanoparticles Capped by Poly(ethylene glycol). J. Electron. Mater. 44, 4227–4235 (2015). https://doi.org/10.1007/s11664-015-3974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3974-3

Keywords

Navigation