Skip to main content

Advertisement

Log in

International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound from 300 K to 773 K

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

International transport property-measurement round-robins have been conducted by the thermoelectric annex under the International Energy Agency (IEA) Implementing Agreement on Advanced Materials for Transportation (AMT). Two previous round-robins used commercially available bismuth telluride as the test material, with the objectives of understanding measurement issues and developing standard testing procedures. This round-robin extended the measurement temperature range to 773 K. It was designed to meet the increasing demands for reliable transport data for thermoelectric materials used for power-generation applications. Eleven laboratories from six IEA-AMT member countries participated in the study. A half-Heusler (n-type) material prepared by GMZ Energy was selected for the round-robin. The measured transport properties had a narrower distribution of uncertainty than previous round-robin results. The study intentionally included multiple testing methods and instrument types. Over the full temperature range, the measurement discrepancies for the figure of merit, ZT, in this round-robin were ±11.5 to ±16.4% from the averages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Nolas, G.A. Slack, and S.B. Schujman, Semicond. Semimet. 69, 255 (2000).

    Article  Google Scholar 

  2. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  Google Scholar 

  3. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  Google Scholar 

  4. D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).

    Article  Google Scholar 

  5. C. Uher, Semicond. Semimet. 69, 139 (2000).

    Article  Google Scholar 

  6. J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A.J. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. B 80, 115329 (2009).

    Article  Google Scholar 

  7. Z.H. Dughaish, Phys. B 322, 205 (2002).

    Article  Google Scholar 

  8. J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  9. Y. Pei, X. Shi, A.D. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  10. A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder, Mater. Today 14, 526 (2011).

    Article  Google Scholar 

  11. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (New York: Springer, 2001).

    Book  Google Scholar 

  12. Q. Zhang, H.Z. Wang, Q. Zhang, W. Liu, B. Yu, H. Wang, D. Wang, G. Ni, G. Chen, and Z.F. Ren, NanoLetters 12, 2324 (2012).

    Article  Google Scholar 

  13. Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, G. Chen, and Z.F. Ren, JACS 134, 10031 (2012).

    Article  Google Scholar 

  14. J. Tobola, J. Pierre, S. Kaprzyk, R.V. Skolozdra, and M.A. Kouacou, J. Phys. 10, 1013 (1998).

    Google Scholar 

  15. F.G. Aliev, N.B. Brandt, V.V. Moschalkov, V.V. Kozyrkov, R.V. Scolozdra, and A.I. Belogorokhov, Phys. B 75, 167 (1989).

    Google Scholar 

  16. S. Ogut and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).

    Article  Google Scholar 

  17. W.E. Pickett and J.S. Moodera, Phys. Today 54, 39 (2001).

    Article  Google Scholar 

  18. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  Google Scholar 

  19. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, and E. Bucher, J. Phys. 11, 1697 (1999).

    Google Scholar 

  20. S. Sportouch, P. Larson, M. Bastea, P. Brazis, J. Ireland, C.R. Kannenwurf, S.D. Mahanti, C. Uher, and M.G. Kanatzidis, in Thermoelectric Materials 1998?The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, ed. T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. (Materials Research Society Symposium Proceedings, Warrendale, PA, 1999), vol. 545, p. 421.

  21. S. Bhattacharya, A.L. Pope, R.T. Littleton IV, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon, Appl. Phys. Lett. 77, 2476 (2000).

    Article  Google Scholar 

  22. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, and T.M. Tritt, J. Appl. Phys. 88, 1952 (2000).

    Article  Google Scholar 

  23. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  Google Scholar 

  24. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86, 2105 (2005).

    Article  Google Scholar 

  25. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z.F. Ren, Adv. Energy Mater. 1, 643 (2011).

    Article  Google Scholar 

  26. X. Yan, G. Joshi, W.S. Liu, Y.C. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, NanoLetters 11, 556 (2011).

    Article  Google Scholar 

  27. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  28. M. Fukano, T. Iida, K. Makino, M. Akasaka, Y. Oguni, and Y. Takanashi, in Thermoelectric Power Generation, ed. T. P. Hogan, J. Yang, R. Funahashi, and T. Tritt (MRS Proceedings, 2007), vol. 1044, pp. U06-13.

  29. N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 57, 5036 (2009).

    Article  Google Scholar 

  30. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  Google Scholar 

  31. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. Part 2 39, L1127 (2000).

    Article  Google Scholar 

  32. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62, 166 (2000).

    Article  Google Scholar 

  33. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. Part 2 39, L531 (2000).

    Article  Google Scholar 

  34. A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 96, 931 (2004).

    Article  Google Scholar 

  35. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003).

    Article  Google Scholar 

  36. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 362 (2001).

    Article  Google Scholar 

  37. J.R. Salvador, J.Y. Cho, Z. Ye, J.E. Moczygemba, A.J. Thompson, J.W. Sharp, J.D. König, R. Maloney, T. Thompson, J. Sakamoto, H. Wang, A.A. Wereszczak, and G.P. Meisner, J. Electron. Mater. 42, 1389 (2013).

    Article  Google Scholar 

  38. K. Barthholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).

    Article  Google Scholar 

  39. H. Wang, W.D. Porter, H. Böttner, J.D. König, L. Chen, S.Q. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J.W. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 654 (2013).

    Article  Google Scholar 

  40. H. Wang, W.D. Porter, H. Böttner, J.D. König, L. Chen, S.Q. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J.W. Sharp, J. Lo, H. Kleinke, and L. Kiss, J. Electron. Mater. 42, 1073 (2013).

    Article  Google Scholar 

  41. J.R. Salvador, J. Yang, X. Shi, H. Wang, A.A. Wereszczak, H. Kong, and C. Uher, Phil. Mag. 89, 1517 (2009).

    Article  Google Scholar 

  42. M.S. Ei-Genk, H.H. Saber, J. Sakamoto, and T. Caillat, IEEE Proceedings of 22nd International Conference on Thermoelectrics (2003), pp. 417−420.

  43. A. Scock, Proceedings of the Tenth Symposium on Space Nuclear Power and Propulsion, January 10?14, (Albuquerque, NM, 1993), vol. 271, p. 171.

  44. G.L. Bennett, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 520.

    Google Scholar 

  45. M. Grabe, Measurement Uncertainties in Science and Technology (New York: Springer, 2005).

    Google Scholar 

  46. J. Martin, Meas. Sci. Technol. 24, 085601 (2013).

    Article  Google Scholar 

  47. ASTM Designation E 1461, 933 (1992).

  48. International Organization for Standards, ISO 21748 (2010).

  49. D. Salmon, G. Roebben, A. Lamberty, and R. Brandt, EUR Report, 21764 EN (2007).

  50. E. Lenz, F. Elder, and P. Ziolkowski, Int. J. Thermophys. 34, 1975 (2013).

    Article  Google Scholar 

  51. J. Mackey, F. Dynys, and A. Sehirlioglu, Rev. Sci. Instrum. 85, 085119 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The paper describes work being conducted is part of the Implementing Agreement on Advanced Materials for Transportation under the auspices of the International Energy Agency. The authors would like to acknowledge financial support by Natural Resources Canada for the work conducted at CanmetMATERIALS, the International S&T Cooperation Program of China (2015DFA51050), and the home institution of each participating laboratory. HW would like to thank the assistant secretary for Energy Efficiency and Renewable Energy of the Department of Energy and the Propulsion Materials program under the Vehicle Technologies program, and Oak Ridge National Laboratory managed by UT-Battelle LLC under contract DE-AC 05000OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Bai, S., Chen, L. et al. International Round-Robin Study of the Thermoelectric Transport Properties of an n-Type Half-Heusler Compound from 300 K to 773 K. J. Electron. Mater. 44, 4482–4491 (2015). https://doi.org/10.1007/s11664-015-4006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4006-z

Keywords

Navigation