Skip to main content
Log in

Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The semiconducting polycrystalline ferrite materials with the general formula Ni1−x Mg x Fe2O4 were synthesized by using the solid state reaction method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrographs, and atomic force microscopy techniques were utilized to study the structural parameters. XRD confirms the formation of single phase cubic spinel structure of the ferrites. The crystallite sizes of ferrites determined using the Debye–Scherer formula ranges from 0.963 μm to 1.069 μm. The cation distribution of ferrite shows that Mg2+ ions occupy a tetrahedral site (A-site) and the Ni2+ ion occupy an octahedral site (B-site) whereas Fe3+ ions occupies an octahedral as well as a tetrahedral site. The study of elastic parameters such as the longitudinal modulus, rigidity modulus, Young’s modulus, bulk modulus, and Debye temperature were estimated using the FTIR technique. The decrease of direct current (DC) resistivity with increase in temperature indicates the semiconducting nature of ferrites. The dielectric constant as well as loss tangent decreases with increase in frequency, and at still higher frequencies, they are almost constant. This shows usual dielectric dispersion behavior attributed to the Maxwell–Wagner type of interfacial polarization and is in accordance with Koop’s phenomenological theory. The linear increase of alternating current conductivity with increase of frequency shows the small polaron hopping type of conduction mechanism in all the ferrites. The magnetic properties such as saturation magnetization (M s ), magnetic moment, coercivity, remnant magnetization (M r ), and the ratio of M r /M s was estimated using the M–H loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, J. Phys. D Appl. Phys. 36, 167 (2003).

    Article  Google Scholar 

  2. J. Kulikowski, J. Magn. Magn. Mater. 41, 56 (1990).

    Article  Google Scholar 

  3. M.A. El Hiti, J. Phys. D Appl. Phys. 29, 501 (1999).

    Article  Google Scholar 

  4. A. Largeteau, J.M. Reau, and J. Raves, Phys. Stat. Sol. (a) 111, 627 (1990).

    Article  Google Scholar 

  5. A.M. Abdeen, J. Magn. Magn. Mater. 192, 121 (1999).

    Article  Google Scholar 

  6. C.G. Koops, Phys. Rev. 83, 121 (1951).

    Article  Google Scholar 

  7. F. Haberey and H. Wijn, Phys. Stat. Sol. (a) 26, 231 (1968).

    Article  Google Scholar 

  8. V.R.K. Murthy and J. Sobhanadri, Phys. Stat. Sol. (a) 3, 647 (1976).

    Article  Google Scholar 

  9. M. Naeem, N.A. Shah, I.H. Gul, and A. Maqsood, J. Alloys Compd. 487, 739 (2009).

    Article  Google Scholar 

  10. M.A. Gabal and Y.M. Al Angari, Mater. Chem. Phys. 118, 153 (2009).

    Article  Google Scholar 

  11. P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, and R.K. Kotnala, Mater. Chem. Phys. 132, 138 (2012).

    Article  Google Scholar 

  12. T.J. Shinde, A.B. Gadkari, and P.N. Vasambekar, Mater. Chem. Phys. 111, 87 (2008).

    Article  Google Scholar 

  13. R.D. Waldron, Phys. Rev. 99, 1727 (1955).

    Article  Google Scholar 

  14. V.A.M. Brabers, Phys. Status Sol. 33, 563 (1969).

    Article  Google Scholar 

  15. P.P. Hankare, V.T. Vader, N.M. Patil, S.D. Jadhav, U.B. Sankpal, M.R. Kadam, B.K. Chougule, and N.S. Gajbhiye, Mater. Chem. Phys. 113, 233 (2009).

    Article  Google Scholar 

  16. N.M. Mahmoodi, J. Taiwan Inst. Chem. Eng. 44, 322 (2013).

    Article  Google Scholar 

  17. R.S. Gaikwad, S.-Y. Chae, R.S. Mane, S.-H. Han, O.-S. Joo, SAGE-Hindawi Access to Res. Int. J. Electrochem. 2011, 1 (2011).

  18. R.S. Devan, B.K. Chougule, and Y.D. Kolekar, J. Phys.: Condens. Matter 18, 9809 (2006).

    Google Scholar 

  19. E.J.W. Verwey, F. de Boer, and J.H. van Santen, J. Chem. Phys. 16, 1091 (1948).

    Article  Google Scholar 

  20. G.N. Chavan, P.B. Belavi, L.R. Naik, B.K. Bammannavar, K.P. Ramesh, and S. Kumar, Int. J. Sci. Technol. Res. 2, 82 (2013).

    Google Scholar 

  21. R.C. Kambale, P.A. Shaikh, S.S. Kamble, and Y.D. Kolekar, J. Alloys Compd. 478, 599 (2009).

    Article  Google Scholar 

  22. A.M. El-Sayed, Mater. Chem. Phys. 82, 583 (2003).

    Article  Google Scholar 

  23. M.U. Islam, T. Abbas, S.B. Niazi, Z. Ahmad, S. Sabeen, and M.A. Chaudhry, Solid State Commun. 130, 353 (2004).

    Article  Google Scholar 

  24. G.M. Kale and T. Asokan, Appl. Phys. Lett. 62, 2324 (1993).

    Article  Google Scholar 

  25. N. Rezlescuu and E. Cuciureanu, J. Phys. Chem. Solids 32, 1096 (1971).

    Article  Google Scholar 

  26. P. Chavan and L.R. Naik, Int. J. Eng. Sci. Res. 6, 29 (2016).

    Google Scholar 

  27. R.F.G. Gardner, R.L. Moss, and D.W. Tanner, Br. J. Appl. Phys. 17, 55 (2002).

    Article  Google Scholar 

  28. N. Sivakumar, A. Narayanasamy, J.M. Greneche, R. Murugaraj, and Y.S. Lee, J. Alloys Compd. 504, 395 (2010).

    Article  Google Scholar 

  29. K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971).

    Article  Google Scholar 

  30. D.R. Patil and B.K. Chougule, J. Alloys Compd. 458, 335 (2008).

    Article  Google Scholar 

  31. H.H. Qiu, M. Kudo, and H. Sakata, Mater. Chem. Phys. 51, 233 (1997).

    Article  Google Scholar 

  32. D. Adler and J. Feinleib, Phys. Rev. B 2, 3112 (1970).

    Article  Google Scholar 

  33. S.L. Kadam, K.K. Patankar, C.M. Kanamadi, and B.K. Chougule, Mater. Res. Bull. 39, 2265 (2004).

    Article  Google Scholar 

  34. K.B. Modi, M.K. Rangolia, M.C. Chhantbar, and H.H. Joshi, J. Mater. Sci. 41, 7308 (2006).

    Article  Google Scholar 

  35. L. Said Jan and M. Ahmed Siddig, Chin. J. Polym. Sci. 29, 181 (2011).

    Article  Google Scholar 

  36. A.I. Ahmed, M.A. Siddig, A.A. Mirghni, M.I. Omer, and A.A. Elbadawi, Adv. Nanopart. 4, 45 (2015).

    Article  Google Scholar 

  37. A.E. Berkowitz, W.J. Schuele, and P.J. Flanders, J. Appl. Phys. 39, 1261 (1968).

    Article  Google Scholar 

  38. A.B. Gadkari, T.J. Shinde, and P.N. Vasambekar, J. Mater. Sci.: Mater. Electron. 21, 96 (2010).

    Google Scholar 

  39. A. Verma and R. Chatterjee, J. Magn. Magn. Mater. 306, 313 (2006).

    Article  Google Scholar 

  40. M. Siva Ram Prasad, B.B.V.S.V. Prasad, B. Rajesh, K.H. Rao, and K.V. Ramesh, J. Magn. Magn. Mater. 323, 2115 (2011).

    Article  Google Scholar 

  41. Y.P. Irkin and E.A. Turor, Sovt. Phys. JEPT. 33, 673 (1957).

    Google Scholar 

Download references

Acknowledgement

The author (Pradeep Chavan) expresses his gratitude to Dr. Jyoti Shah, National Physical Laboratory, New Delhi, for providing an opportunity to carry out magnetic measurements at their laboratory. The author is thankful to staff of University Science Instrumentation Centre (USIC), Karnatak university Dharwad for their help during the measurement of AFM, UV, and FTIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, P., Naik, L.R., Belavi, P.B. et al. Studies on Electrical and Magnetic Properties of Mg-Substituted Nickel Ferrites. J. Electron. Mater. 46, 188–198 (2017). https://doi.org/10.1007/s11664-016-4886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4886-6

Keywords

Navigation