Skip to main content

Advertisement

Log in

Electric and Dielectric Properties of Au/ZnS-PVA/n-Si (MPS) Structures in the Frequency Range of 10–200 kHz

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Pure polyvinyl alcohol (PVA) capped ZnS semiconductor nanocrystals were prepared by microwave-assisted method, and the optical and structural properties of the as-prepared materials were characterized by x-ray diffraction (XRD) and Ultraviolet–visible (UV-Vis) techniques. The XRD pattern shows the formation of ZnS nanocrystals, and the UV–Vis spectroscopy results show a blue shift of about 1.2 eV in its band gap due to the confinement of very small nanostructures. The concentration of donor atoms (N D), diffusion potential (V D), Fermi energy level (E F), and barrier height (ΦB (CV)) values were obtained from the reverse bias C −2V plots for each frequency. The voltage dependent profile of series resistance (R s) and surface states (N ss) were also obtained using admittance and low–high frequency methods, respectively. R sV and N ssV plots both have distinctive peaks in the depletion region due to the spatial distribution charge at the surface states. The effect of R s and interfacial layer on the CV and G/ωV characteristics was found remarkable at high frequencies. Therefore, the high frequency CV and G/ωV plots were corrected to eliminate the effect of R s. The real and imaginary parts of dielectric constant (ε′ and ε″) and electric modulus (M′ and M″), loss tangent (tan δ), and ac electrical conductivity (σ ac) were also obtained using C and G/ω data and it was found that these parameters are indeed strong functions of frequency and applied bias voltage. Experimental results confirmed that the N ss, R s , and interfacial layer of the MPS structure are important parameters that strongly influence both the electrical and dielectric properties. The low values of N ss (~109 eV−1 cm−2) and the value of dielectric constant (ε′ = 1.3) of ZnS-PVA interfacial layer even at 10 kHz are very suitable for electronic devices when compared with the SiO2. These results confirmed that the ZnS-PVA considerably improves the performance of Au/n-Si (MS) structure and also allow it to work as a capacitor, which stores electric charges or energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Khatami, S. Pourseyedi, M. Khatami, H. Hamidi, M. Zaeifi, and L. Soltani, Biores. Bioprod. (BRBP) 2, 1 (2015).

    Article  Google Scholar 

  2. M. Jayandran, M.M. Haneefa, and V. Balasubramanian, J. Chem. Pharm. Res. 7, 251 (2015).

    Google Scholar 

  3. R.M. Agrawal, S.D. Charpe, F.C. Raghuwanshi, and G.T. Lamdhade, Int. J. Appl. Innov. Eng. Manag. (IJAIEM) 4, 141 (2015).

    Google Scholar 

  4. G. Anandha Babu, G. Ravi, Y. Hayakawa, and M. Kumaresavanji, J. Magn. Magn. Mater. 375, 184 (2015).

    Article  Google Scholar 

  5. T. Ali and A. Venkataraman, Int. J. Adv. Eng. Technol. 7, 122 (2014).

    Google Scholar 

  6. M. Kooti and L. Matturi, Int. Nano Lett. 1, 38 (2011).

    Google Scholar 

  7. D. Moore and Z.L. Wang, J. Mater. Chem. 16, 3898 (2006).

    Article  Google Scholar 

  8. B. Bodo, R. Singha, and S.C. Das, Int. J. Appl. Phys. Math. 2, 287 (2012).

    Article  Google Scholar 

  9. R. John and S.S. Florence, Chalcogenide Lett. 7, 263 (2010).

    Google Scholar 

  10. D. Ayodhya, M. Venkatesham, A.S. Kumari, K.G. Mangatayaru, and G. Veerabhadram, J. Appl. Chem. 6, 1 (2013).

    Google Scholar 

  11. T.T.Q. Hoa, L. Van Vu, T.D. Canh, and N.N. Long, J. Phys. Conf. Ser. 187, 1 (2009).

    Google Scholar 

  12. N.K. Abbas, K.T. Al-Rasoul, and Z.J. Shanan, Int. J. Electrochem. Sci. 8, 3049 (2013).

    Google Scholar 

  13. K.V. Anand, R. Mohan, R.M. Kumar, M.K. Chinnu, and R. Jayavel, Proc. Indian Natl. Sci. Acad. 79, 395 (2013).

    Google Scholar 

  14. M. Hafeez, U. Manzoor, and A.S. Bhatti, J. Mater. Sci. Mater. Electron. 22, 1772 (2011).

    Article  Google Scholar 

  15. U. Gangopadhyay, K. Kyunghea, S.K. Dhungel, D. Mangalaraj, J.H. Park, and J. Yi, Trans. Electr. Electronic Mat. 5, 1 (2004).

  16. A. Chandran, N. Francis, T. Jose, and K.C. George, SB Acad. Rev. 7, 17 (2010).

    Google Scholar 

  17. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, and N. Kamarulzaman, J. Lumin. 145, 244 (2014).

    Article  Google Scholar 

  18. J.P. Borah and K.C. Sarma, Acta Phys. Pol. A 114, 713 (2008).

    Article  Google Scholar 

  19. A.K. Thottoli and A.K.A. Unni, J. Nanostruct. Chem. 3, 56 (2013).

  20. X. Li, X. Wang, Q. Xiong, and P.C. Eklund, Nano Lett. 5, 1982 (2005).

    Article  Google Scholar 

  21. X. Wang, H. Huang, B. Liang, B. Liu, D. Chen, and G. Shen, Solid State Mater. Sci. 38, 57 (2013).

    Google Scholar 

  22. M. Ahmad, K. Rasool, M.A. Rafiq, M.M. Hasan, C.B. Li, and Z.A.K. Durrani, Phys. E 45, 201 (2012).

    Article  Google Scholar 

  23. C. Lawther and J. Woods, J. Lumin. 18 & 19, 724 (1979).

  24. S.-P. Han, H. Ko, J.-W. Park, N. Kim, Y.-J. Yoon, J.-H. Shin, D.Y. Kim, D.H. Lee, and K.H. Park, Opt. Express 21, 25875 (2013).

    Google Scholar 

  25. T.F. Kuech and J.O. McGaldin, J. Vac. Sci. Technol. 17, 891 (1980).

    Article  Google Scholar 

  26. D. Korucu and A. Turut, Int. J. Electron. 101, 1595 (2014).

    Article  Google Scholar 

  27. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş. Altındal, and R. Shokrani-Havigh, Phys. B Condens. 500, 154 (2016).

    Article  Google Scholar 

  28. A.R. Deniz, Z. Caldiran, Y. Sahin, M. Sinoforoglu, O. Metin, K. Meral, and S. Aydogan, Met. Mater. Trans. A 44, 3813 (2013).

    Article  Google Scholar 

  29. B. Kinaci, Y. Ozen, K. Kizilkaya, T. Asar, S.S. Cetin, E. Boyali, and S. Ozcelik, J. Mater. Sci. Mater. Electron. 24, 1375 (2013).

    Article  Google Scholar 

  30. D. Korucu and S. Duman, Thin Solid Films 531, 436 (2013).

    Article  Google Scholar 

  31. G. Ersöz, İ. Yucedağ, Y. AzizianKalandaragh, İ. Orak, and Ş.Altıdal IEEE Trans. Electron Devices 63, 2948 (2016).

  32. Y. Lv, Z. Lin, T.D. Corrigan, J. Zhao, Z. Cao, L. Meng, C. Luan, Z. Wang, and H. Chen. J. Appl. Phys. 109, 074512 (2011).

  33. A. Kumar, T. Kumar, A. Hahnel, D. Kanjilal, and R. Sing, J. Appl. Phys. 104, 1 (2014).

    Google Scholar 

  34. İ. Yücedağ, G. Ersöz, A. Gümüş, and ş. Altındal, Int. J. Mod. Phys. B 29, 1550075 (2015).

  35. L. Vafayi, S. Gharibe, and S. Afshar, J. Appl. Chem. Res. 7, 63 (2013).

    Google Scholar 

  36. E.K. Goharshadi, S.H. Sajjadi, R. Mehrkhah, and P. Chem, Eng. J. 209, 113 (2012).

    Google Scholar 

  37. H.V. Chung, P.T. Huy, T.T. An, N.T.M. Thuy, and N.D. Chien, J. Korean Phys. Soc. 52, 1562 (2008).

    Article  Google Scholar 

  38. J.L. Yuan, K. Kajiyoshi, K. Yanagisawa, H. Sasaoka, and K. Nishimura, Mater. Lett. 60, 1284 (2006).

    Article  Google Scholar 

  39. J.P. Borah, J. Barman, and K.C. Sarma, Chalcogenide Lett. 5, 201 (2008).

    Google Scholar 

  40. D.C. Onwudiwe and P.A. Ajibade, Int. J. Mol. Sci. 12, 5538 (2011).

    Article  Google Scholar 

  41. Q. Zhao, L. Hou, and R. Huang, Inorg. Chem. Commun. 6, 971 (2003).

    Article  Google Scholar 

  42. G. Nabiyouni, R. Sahraei, M. Toghiany, M.H. Majles Ara, and K. Hedayati, Rev. Adv. Mater. Sci. 27, 52 (2011).

    Google Scholar 

  43. X. Cheng, Q. Zhao, Y. Yang, S.C. Tjong, and R.K.Y. Li, J. Mater. Sci. 45, 777 (2010).

    Article  Google Scholar 

  44. M. Dela Garza, I. Lopez, F. Avina, and I. Gomez, J. Ovonic Res. 9, 89 (2013).

    Google Scholar 

  45. T. Prakash, R. Jayaprakash, G. Neri, and S. Kumar, J. Nanopart. 2103, 1 (2013).

    Article  Google Scholar 

  46. I. Taşcıoğlu, W.A. Farooq, R. Turan, S. Altındal, and F. Yakuphanoğlu, JALCOM 590, 157 (2014).

    Google Scholar 

  47. F. Yakuphanoğlu, A. Tataroğlu, A. Al-Ghmadi, R.K. Gupta, Y. Al-Turki, Z. Şerbetçi, S. BinOmran, and F. El-Tantawy, Sol. Energy Mater. Sol. Cells 133, 699 (2015).

    Google Scholar 

  48. S.A. Yerişkin and H.I. Unal, J. Appl. Polym. Sci. 120, 390 (2011).

    Article  Google Scholar 

  49. A. Tabip, N. Sdiri, H. Elhouichet, and M. Ferid, JALCOM 622, 687 (2015).

    Google Scholar 

  50. Y.Ş. Asar, T. Asar, S. Altındal, and S. Özçelik, JALCOM 628, 442 (2015).

    Google Scholar 

  51. S. Zeyrek, E. Acaroğlu, S. Altındal, S. Birdoğan, and M.M. Bülbül, Curr. Appl. Phys. 13, 1225 (2013).

    Article  Google Scholar 

  52. R. Padma, B. Prasanna, and V. Rajagopal Reddy, Superlattices Microstruct. 60, 358 (2013).

    Article  Google Scholar 

  53. V. Rajagopal Reddy, Thin Solid Films 556, 300 (2014).

    Article  Google Scholar 

  54. S. Demirezen, A. Kaya, S. Altındal Yerişkin, M. Balbaşı, İ. Uslu, Results in Phys. 6, 180 (2016).

  55. H. Tecimer, H. Uslu, Z.A. Alahmed, and F. Yakuphanoğlu, Compos. B 57, 25 (2014).

    Article  Google Scholar 

  56. Y. Azizian-Kalandaragh, U. Aydemir, and S. Altındal, J. Electron. Mater. 43, 1226 (2014).

    Article  Google Scholar 

  57. İ. Yücedağ, A. Kaya, Ş. Altındal, and I. Uslu, China Phys. B 23, 047304 (2014).

    Article  Google Scholar 

  58. A. Turut, A. Karabulut, K. Ejderha, and N. Bıyıklı, Mater. Sci. Semicond. Process. 39, 400 (2015).

    Article  Google Scholar 

  59. E.H. Nicollian and J.R. Brews, Metal Oxide Semiconductor (MOS) Phys. and Tech. (New York: Wiley, 1982).

    Google Scholar 

  60. P.B. Macedo, C.T. Moyniham, and R. Bose, Phys. Chem. Glass 13, 171 (1972).

  61. İ. Yücedağ, A. Kaya, and Ş. Altındal, Int. Mod. Phys. B 28, 1450153 (2014).

    Article  Google Scholar 

  62. İ. Yücedağ, A. Kaya, H. Tecimer, and Ş. Altındal, Mater. Sci. Semicond. Process. 28, 37 (2014).

    Article  Google Scholar 

  63. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, and M. Maglion, Phys. Rev. B 49, 7868 (1994).

    Article  Google Scholar 

  64. İ.M. Afendiyeva, I. Dökme, S. Altındal, M.M. Bülbül, and A. Tataroglu, Microlectron. Eng. 85, 247 (2008).

    Article  Google Scholar 

  65. İ. Yücedağ, Ş. Altındal, and A. Tataroğlu, Microlectron. Eng. 84, 180 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Azizian-Kalandaragh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraz, N., Yücedağ, İ., Azizian-Kalandaragh, Y. et al. Electric and Dielectric Properties of Au/ZnS-PVA/n-Si (MPS) Structures in the Frequency Range of 10–200 kHz. J. Electron. Mater. 46, 4276–4286 (2017). https://doi.org/10.1007/s11664-017-5363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5363-6

Keywords

Navigation